Hi DonM,
I missed Steve... I don't know what's happen to him, over two months...
ttt
..4...6...1.4.2.9.9.......3.5.6.9.2...........7.8.3.6.7.......1.2.3.8.7...5...8..
. . 4|. . .|6 . .
. 1 .|4 . 2|. 9 .
9 . .|. . .|. . 3
-----+-----+-----
. 5 .|6 . 9|. 2 .
. . .|. . .|. . .
. 7 .|8 . 3|. 6 .
-----+-----+-----
7 . .|. . .|. . 1
. 2 .|3 . 8|. 7 .
. . 5|. . .|8 . .
..5...6...9.2.1.5.1.......8.2.9.5.6...........4.1.6.7.4.......7.7.8.3.2...9...3..
. . 5|. . .|6 . .
. 9 .|2 . 1|. 5 .
1 . .|. . .|. . 8
-----+-----+-----
. 2 .|9 . 5|. 6 .
. . .|. . .|. . .
. 4 .|1 . 6|. 7 .
-----+-----+-----
4 . .|. . .|. . 7
. 7 .|8 . 3|. 2 .
. . 9|. . .|3 . .
..3...1...2.9.1.7.5.......2.9.2.3.6...........3.5.8.4.6.......4.5.8.7.9...8...7..
. . 3|. . .|1 . .
. 2 .|9 . 1|. 7 .
5 . .|. . .|. . 2
-----+-----+-----
. 9 .|2 . 3|. 6 .
. . .|. . .|. . .
. 3 .|5 . 8|. 4 .
-----+-----+-----
6 . .|. . .|. . 4
. 5 .|8 . 7|. 9 .
. . 8|. . .|7 . .
Ruud50k #3284
......695.3.5....8....4......63...4.15.2.6.39.2...47......9....2....8.7.391......
After SSTS
478 1478 278 | 178 1238 1237 | 6 9 5
67 3 279 | 5 126 1279 | 4 12 8
5 168 289 | 1689 4 129 | 3 12 7
-------------------+-------------------+------------------
789 78 6 | 3 158 159 | 125 4 12
1 5 4 | 2 7 6 | 8 3 9
89 2 3 | 189 158 4 | 7 56 16
-------------------+-------------------+------------------
4678 4678 78 |B14 9 235-1 | 125 56 12346
2 46 5 |B146 3-16 8 | 9 7 1346
3 9 1 |A467 A256 C257 |C25 8 46-2
Sets: A = {r9c45} = {24567}; B = {r78c4} = {146}; C = {r9c67} = {257}
Elims: r7c6<>1, r8c5<>16, r9c9<>2
r7c6 <> 1 - reduces multiplicities to {011111} invalid for 6 cells
r8c5 <> 1 - reduces multiplicities to {011111} invalid for 6 cells
r8c5 <> 6 - reduces multiplicities to {111101} invalid for 6 cells
r9c9 <> 2 - reduces multiplicities to {101111} invalid for 6 cells
r1c4 <> 1
r3c4 <> 1
r6c4 <> 1
ronk wrote:Is this pattern a genuine SDC
hobiwan wrote:ronk wrote:Is this pattern a genuine SDC
I see no reason why it shouldn't be. r9c6 is in r9 and does not belong to r9c45. But if you don't like it you can always use
SdC: r9c456 - {24567} (r9c7 - {25}, r78c4 - {146}) or
SdC: r9c56 - {2567} (r9c7 - {25}, r789c4 - {1467})
......695.3.5....8....4......63...4.15.2.6.39.2...47......9....2....8.7.391......
After SSTS
478 1478 278 | 78-1 1238 1237 | 6 9 5
67 3 279 | 5 126 1279 | 4 12 8
5 168 289 | 689-1 4 129 | 3 12 7
-------------------+-------------------+------------------
789 78 6 | 3 158 159 | 125 4 12
1 5 4 | 2 7 6 | 8 3 9
89 2 3 | 89-1 158 4 | 7 56 16
-------------------+-------------------+------------------
4678 4678 78 |A14 9 235-1 | 125 56 12346
2 46 5 |C146 3-16 8 | 9 7 1346
3 9 1 |*467 *256 *257 |B25 8 46-2
set A = r789c4 {1467}, set B = r9c567 {2567} - Dual linked common restricted {67} resulting in the following:
r1c4 <> 1, r3c4 <> 1, r6c4 <> 1, r7c6 <> 1, r8c5 <> 16, r9c9 <> 2
PIsaacson wrote:DonM,
I just can't make this one fit your description unless I really misunderstood or misread the very first posting. Is it because you are focusing on finding SDCs and "relaxing" the formal definition in order to make them easier to locate? I have to admit that I've gone back and using your technique, found SDCs in puzzles that stumped me before, so again thanks for this insight into manual solving.
I'm still uncertain if an SDC allows for more eliminations in some cases than a standard 2 sector DDS or an ALS chain.
naked/hidden singles
row/col/box interaction
subsets size 2-4 naked and hidden
fishing based on Pattern Overlay Method (POM) which is similar to Ronk's base/cover set fishing algorithm
coloring based on X-colors/X-cycles single digit analysis
dds subset counting limited to 2 sectors with {1111...} multiplicities for 6 cells/candidates.
Statistics for royle17 (max 6 candidates)
36628 puzzles took 438.40 sec total average 11.97 msec/puzzle
Sue deCoq 992 out of 36628 2.71%
2 sec DDS 5005 out of 36628 13.66%
Solved 35918 out of 36628 98.06%
Statistics for ruud top10000 (max 6 candidates)
10000 puzzles took 4057.74 sec total average 405.77 msec/puzzle
Sue deCoq 1415 out of 10000 14.15%
2 sec DDS 7885 out of 10000 78.85%
Solved 48 out of 10000 0.48%
Statistics for ruud top50000 (max 6 candidates)
50000 puzzles took 20363.12 sec total average 407.26 msec/puzzle
Sue deCoq 29012 out of 50000 58.02%
2 sec DDS 104507 out of 50000 209.01%
Solved 17364 out of 50000 34.73%
Statistics for gsf8152 (max 6 candidates)
8152 puzzles took 656.81 sec total average 80.57 msec/puzzle
Sue deCoq 206 out of 8152 2.53%
2 sec DDS 698 out of 8152 8.56%
Solved 229 out of 8152 2.81%
Statistics for top1465 (max 6 candidates)
1465 puzzles took 318.02 sec total average 217.08 msec/puzzle
Sue deCoq 317 out of 1465 21.64%
2 sec DDS 1132 out of 1465 77.27%
Solved 576 out of 1465 39.32%
Statistics for top1465 (max 7 candidates)
1465 puzzles took 6802.01 sec total average 4643.01 msec/puzzle
Sue deCoq 377 out of 1465 25.73%
2 sec DDS 1252 out of 1465 85.46%
Solved 589 out of 1465 40.20%
Statistics for top1465 (max 8 candidates)
202 puzzles took 11468.35 sec total average 56774.00 msec/puzzle
Sue deCoq 45 out of 202 22.28%
2 sec DDS 131 out of 202 64.85%
Solved 141 out of 202 69.80%
Ruud50k #3284
......695.3.5....8....4......63...4.15.2.6.39.2...47......9....2....8.7.391......
After SSTS
478 1478 278 | 78-1 1238 1237 | 6 9 5
67 3 279 | 5 126 1279 | 4 12 8
5 168 289 | 689-1 4 129 | 3 12 7
-------------------+-------------------+------------------
789 78 6 | 3 158 159 | 125 4 12
1 5 4 | 2 7 6 | 8 3 9
89 2 3 | 89-1 158 4 | 7 56 16
-------------------+-------------------+------------------
4678 4678 78 |B14 9 235-1 | 125 56 12346
2 46 5 |B146 3-16 8 | 9 7 1346
3 9 1 |A467 A256 C257 |C25 8 46-2
Sets: A = {r9c45} = {24567}; B = {r78c4} = {146}; C = {r9c67} = {257}
Elims: r136c4,7c6<>1, r8c5<>16, r9c9<>2
478 1478 278 | 178 1238 1237 | 6 9 5
67 3 279 | 5 126 1279 | 4 12 8
5 168 289 | 1689 4 129 | 3 12 7
-------------------+-------------------+------------------
789 78 6 | 3 158 159 | 125 4 12
1 5 4 | 2 7 6 | 8 3 9
89 2 3 | 189 158 4 | 7 56 16
-------------------+-------------------+------------------
4678 4678 78 |*14 9 235-1 | 125 56 12346
2 46 5 |*146 3-16 8 | 9 7 1346
3 9 1 |*467 #256 #257 |@25 8 46-2
hobiwan wrote:ronk wrote:Is this pattern a genuine SDC
I see no reason why it shouldn't be. r9c6 is in r9 and does not belong to r9c45. But if you don't like it you can always use
SdC: r9c456 - {24567} (r9c7 - {25}, r78c4 - {146}) or
SdC: r9c56 - {2567} (r9c7 - {25}, r789c4 - {1467})