Claudiarabia wrote:Here I produced another one which may be a bit harder. You will take resort to the dancing links I suppose.
- Code: Select all
5 . . 1 . . . . 4
. . 8 . 2 . . . .
. 2 . . . 3 . . .
4 . . . . . 3 . .
. 5 . . 9 . . 7 .
. . 2 . . . . . 1
. . . 3 . . . 5 .
. . . . 8 . 2 . .
1 . . . . 4 . . 9
This is a very good puzzle, and yes, it is harder than the previous one, but there is no need to dance.
Udosuk wrote:Perhaps Carcul or others will show a Nice-loop or other fancy techniques?
Here is a possible solution for this puzzle:
- Code: Select all
*--------------------------------------------------------------------*
| 5 3679 3679 | 1 67 6789 | 6789 2 4 |
| 679 4 8 | 5679 2 5679 | 1 36 3567 |
| 679 2 1 | 56789 4 3 | 6789 68 5678 |
|----------------------+----------------------+----------------------|
| 4 1 67 | 678 5 2 | 3 9 68 |
| 368 5 36 | 4 9 1 | 68 7 2 |
| 6789 679 2 | 678 3 678 | 5 4 1 |
|----------------------+----------------------+----------------------|
| 2 6789 679 | 3 1 679 | 4 5 678 |
| 3679 3679 4 | 5679 8 5679 | 2 1 367 |
| 1 3678 5 | 2 67 4 | 678 368 9 |
*--------------------------------------------------------------------*
1. [r13c7]-8-[r5c7]=8=[r5c1]=3=[r8c1]-3-[r9c2]=3=[r9c8]=8=[r3c8]-8-
[r13c7], => r1c7/r3c7<>8.
2. [r8c1]=3=[r5c1]-3-[r5c3]=3=[r1c3]=9=[r7c3]-9-[r8c1], => r8c1<>9.
3. [r3c9]=5=[r2c9]=3=[r8c9]-3-[r8c1]=3=[r5c1]=8=[r5c7]=6=[r4c9]-6-
[r2c9|r3c9], => r2c9/r3c9<>6.
4. [r1c7]-6-[r1c5]=6=[r9c5]-6-[r9c78]=6=[r78c9]-6-[r4c9]=6=[r5c7]-6-
[r1c7], => r1c7<>6.
5. [r8c1]=3=[r5c1]=8=[r5c7]=6=[r4c9]-6-[r78c9]=6=[r9c78]-6-[r9c5]
=6=[r1c5]-6-[r1c23]=6=[r23c1]-6-[r5c1|r8c1], => r5c1/r8c1<>6.
6. [r3c9]=5=[r2c9]=3=[r8c9]-3-[r8c1]=3|6=[r23c1]-6-[r1c23]=6=[r1c5]
=7=[r9c5]-7-[r9c7]=7=[r13c7]-7-[r2c9|r3c9], => r2c9/r3c9<>7.
7. [r7c9]-8-[r4c9]=8=[r5c7]-8-[r5c1]-3-[r8c1]-7-[r8c9]=7=[r7c9], =>
r7c9<>8.
8. [r8c6]=5=[r2c6]-5-[r2c9]=5=[r3c9]=8=[r4c9]-8-[r4c4]=8=[r6c4]-8-
[r6c1]=8=[r5c1]=3=[r5c3]-3-[r1c3]-{ATILA(6,7): r4c3|r4c4|r6c6|(r7c6)
|r9c5|r1c5|(r1c3)}-9-[r7c3]=9=[r8c2]-9-[r8c6], => r8c6<>9.
9. [r7c3]=9=[r7c6](-9-[r2c6])-9-[r8c4]=9=[r8c2]-9-[r6c2]=9=[r6c1](-9-
[r2c1])=8=[r5c1]=3=[r8c1]-3-[r9c2]=3=[r9c8]-3-[r2c8](-6-[r2c6])-6-
[r2c1]-7-[r2c6]-5-[r8c6]-{TILA(6,7): r9c5|r9c2|r6c2|r6c6|r8c6}, => r7c3=9.
10. [r4c9]-8-[r4c4]={ATILA(6,7): r4c3|(r4c4)|r6c6|r7c6|r9c5|r1c5|(r1c3)}
=8|3=[r1c3]-3-[r5c3]-6-[r5c7]-8-[r4c9], => r4c9<>8 and the puzzle is solved.
Carcul