- Code: Select all
9...1.......2.3.8...8...7...2.....3.4...6...1.6.....5...3...6...1.8.7.......4...5
r1c6 = 8 Hidden Single
r4c9 = 6 Hidden Single
b8 - 6 Locked Candidate (1)
r2 - 6 Locked Candidate (2)
c9 - 2349 Naked Quad
b6 - 4 Locked Candidate (1)
r7c2 <> 8 Templates -- Pass C (Multi-Colors in Simple Sudoku)
I get this far with Basic Techniques.
- Code: Select all
*--------------------------------------------------------------------*
| 9 3457 2457 | 4567 1 8 | 235 246 234 |
| 1567 457 14567 | 2 579 3 | 159 8 49 |
| 1235 345 8 | 4569 59 4569 | 7 12469 2349 |
|----------------------+----------------------+----------------------|
| 1578 2 1579 | 14579 5789 1459 | 489 3 6 |
| 4 35789 579 | 3579 6 259 | 289 279 1 |
| 1378 6 179 | 13479 23789 1249 | 2489 5 78 |
|----------------------+----------------------+----------------------|
| 2578 4579 3 | 159 259 1259 | 6 12479 78 |
| 256 1 24569 | 8 2359 7 | 239 249 2349 |
| 278 789 279 | 1369 4 1269 | 12389 1279 5 |
*--------------------------------------------------------------------*
At this point, I want to show that [r1c3]=2 using the chain below.
- Code: Select all
[r1c3]=2=[r3c1]=1=[r3c8]-1-[r79c8]
=3=[r6c1]-3-[r6c45]=3=[r5c4]-3-[r9c4]=3=[r9c7]
This results in [b9]=INVALID (no 1s) and I get the contradiction I need.
Is there a simple way to show this chain and the resulting contradiction?