Structures of the solution grid

Everything about Sudoku that doesn't fit in one of the other sections

Postby RW » Sat Jan 05, 2008 6:19 am

Thanks for this! According to the numbers, random picks of 36 rookeries should give:
Code: Select all
2 sol.     20,88
4 sol.     10,94
8 sol.      3,58
16 sol.     0,60

However, in 10M random grids I found:
Code: Select all
2 sol.     20,72
4 sol.     11,72
8 sol.      3,25
16 sol.     0,31

Seems that the average 16-permutable rookery is used less than half as frequently as the average 4-perm. Wonder why this is...

RW
RW
2010 Supporter
 
Posts: 1010
Joined: 16 March 2006

Postby coloin » Sat Jan 05, 2008 5:05 pm

Well my sample size was small, but a bigger one didnt provide any more essentially different 2-rookeries.

I think the error with the 16-perm rookeries is reasonable ! I wouldnt think my numbers would have the power to show that difference.

Each 2-rookery has 6^8*2 isomorphs [3359232]
*2 for the two clue values = 6718464
*181 = 1216041984

Given that there are only 838501632 "different" 2-rookeries.

What is the degree of automorphism with each of our 181 "essentially different" 2-rookeries ?

[1216041984] / [838501632] = 1.4 average

Some of the 2-rookeries will have automorphic isomorphs

Is this the reason for the observed difference [x30-40] in incidence of some of the 181 2-rookeries ?

Might grids with 17s have a greater proportion of "rarer" 2-rookeries ?

C
coloin
 
Posts: 2515
Joined: 05 May 2005
Location: Devon

Postby RW » Sat Jan 05, 2008 11:27 pm

Hmm... actually the fewer appearances of 16-perms seems to imply that there are fewer possible ways to fill in the remaining 7 digits to a 16-perm than a 2- or 4-perm. This must have something to do with the way the clues are placed, I'm guessing it's because of the digit distribution within the boxes. Two of the 16-perms don't have any diagonal boxes (boxes where the two digits aren't in either the same row or the same column). The third 16-perm has only one diagonal box. I haven't looked at them all, but I believe there's only one 8-perm without diagonal boxes, all 4-perms must have at least two diagonal boxes and all 2-perms at least three. The lack of diagonal boxes in the 16 perms probably reduces the possible ways to fill in the rest of the grid. This could of course be verified by counting the grid solutions for all 2-rookeries and comparing this to the amount of diagonal boxes in the rookery, but I don't (neither do I expect anyone else to) have the computing power to pull off a stunt like that...

Perhaps we also need to consider the option that the program I used to create the grids (gsf's program back in the summer of 2006) was biased not to create 2-rookeries without diagonal boxes, though I doubt this is the case.

RW
RW
2010 Supporter
 
Posts: 1010
Joined: 16 March 2006

Postby coloin » Sun Jan 06, 2008 12:12 am

Indeed , the so called random grids made from random puzzles are biased to a degree in the number of U4 unavoidables.

A lot of work was done here

I did a few calculations some time ago [in the min clues thread]!!!

coloin wrote:have run a solver on a few grids of the following pattern [with different B2-B9]:
Code: Select all
123 --- ---
456 1-2 ---
789 --- -12-

--- -2- --1
-1- --- 2--
--2 --1 ---

--1 --- -2-
2-- -1- ---
--- 2-- 1--
coloin wrote: The analysis take 9 hours each! [Hopefully the B1 filling doesnt introduce bias - I cant see any]
Of the five I have done I got solution rates of approx.
2100,000,000
1220,000,000
1200,000,000
1080,000,000
989,000,000 {this is canonical - 1/2 in different row and column}
I dont have the actual grids pertaining here ! - But it is not a difficult "stunt" - very possible with suexk2.exe

I will run it with a few selected 2-rookeries [now we know what they are !]

Is there is a significant difference between the sol counts....?

I stumbled on this some time ago but didnt have the insight that we do now here

on page 4 of this thread Viggo wrote
Code: Select all
Grid name:                             top1  top2  top3  ran1  ran2  ran3    SF   SFB
Number of 2-permutable:                  20    19    26    18    23    25    28    36
Number of 4-permutable:                  13    13     9    16     9     8     8     0
Number of 8-permutable:                   2     4     1     2     3     3     0     0
Number of 16-permutable:                  1     0     0     0     1     0     0     0
Sum of solutions all 2-rookeries:       124   122    96   116   122   106    88    72
Sum of solutions all 3-rookeries:      3414  3384  2322  3252  3222  2574  1818  1194
Max numb. solutions of 3-rookeries:     360   258   252   264   264   120   102    54
Number of minimal 3-rookeries:            7     5    10     2     5    11    15    39       
MCN:                                     12    10    10    10    12    10     9     8


I think he means
Sum of solutions all 2-rookeries: ~ Sum of solutions all 7-rookeries:
Sum of solutions all 3-rookeries: ~ Sum of solutions all 6-rookeries:

Code: Select all
...749568456.8.9.77896.54....8567.4956.498.7.947...68587495...66.5.7489..9.8.6754   48 sol.
...849567456..78.9789.56..464.5987..97.46..855.8.7.946.9768.45.8657.4.9...49.5678   60 sol.
.46..8975785.96.4...945786.49.56.7.8..897.654657.84..95648.9..78..7.549697.64.58.   6 sol.
.4798..5658.476.9..695..874896.45..7754..896....7694859.5..764847869.5..6..8547.9   72 sol.
..568.97464..79.587894.56....49687.596.5.784.857.4..964.6.9.587.7.854.695987.64..   12 sol.
4.6..5987.756894..98..476.5.9.7.85468475.6.9.56..947.8.5987..646.495.87.7.846..59   30 sol.
8569..7.47..456.9849.8.7.56.48.9.6759.5764.8..67.854.9.7.54896.684.795..5.96..847   12 sol.
86.95..74.95.746.84.768.59..498.7.56..64.5789578.964..6..7498.575..6894.9845...67   18 sol.
..89.4576596.7.8.4.74586..97856..94..4..5968796.847.5.4..768.956594..7.88.7.9546.   12 sol.
.4.58976.675.4.98.8.9.675.44678...5959.6.4.78.8.975.467.8..64959.645.8.7.547986..   96 sol.

these are 10 random 6-rookeries, with the sol. count which is the perm. count of the missing 3-rookery.

To note each completion has 6 isomorphic clue combinations.
And the 6 sol. must be a minimal 3-rookery, equivalent to an unentwined 3-rookery.

RW wrote:According to the numbers, random picks of 36 rookeries should give:
which numbers ?.......[not mine hopefully !]
my random 2-rookeries were taken from 2700 random 17-puzzles [one from each puzzle]
C
coloin
 
Posts: 2515
Joined: 05 May 2005
Location: Devon

Postby RW » Sun Jan 06, 2008 9:49 am

coloin wrote:
RW wrote:According to the numbers, random picks of 36 rookeries should give:
which numbers ?.......[not mine hopefully !]
my random 2-rookeries were taken from 2700 random 17-puzzles [one from each puzzle]

Yes, yours... I was under the impression that you gave a list of all essentially different 2-rookeries. Perhaps I was mistaken. Even now when I reread the post I get the impression that it contains them all....

RW
RW
2010 Supporter
 
Posts: 1010
Joined: 16 March 2006

Postby coloin » Sun Jan 06, 2008 1:35 pm

It is the list of ALL essentially different 2-rookeries.
coloin wrote:Well my sample size was small, but a bigger one didnt provide any more essentially different 2-rookeries.

I would have expected Red Ed to correct it if it was wrong !

I cant understand why some are way more common.....it might be automorphism [or lack of automorphism], but I cant visualise it.

The solution counts for a 6-rookery~ [6,12,18..30..60..72..102..120.......?360] average is around 36, there are 3! [3*2*1] equivalent solution grids therefore 36/6 = 6 ways to add a 3-rookrry on average.

What happens when you have a grid with 2 pairs of identical 2-rookerys.....it couldnt be an automorphic grid perhaps ??
C
coloin
 
Posts: 2515
Joined: 05 May 2005
Location: Devon

Postby coloin » Mon Jan 07, 2008 1:22 am

Answering my own question

The automorphic grid - duk15
Code: Select all
123568479864791352957243681218657934536489127749312865391825746472136598685974213
Its 36 2-rookeries
Code: Select all
.......79...79....9.7...........79.......9..77.9.......9....7...7.....9....97....
......4.9..4.9....9...4..........9.4...4.9....49.......9.....4.4......9....9.4...
......47...47.......7.4.........7..4...4....774.............74.47...........74...
.....8..98...9....9......8...8...9......89.....9...8...9.8............98.8.9.....
.....8.7.8..7.......7....8...8..7.......8...77.....8.....8..7...7......8.8..7....
.....84..8.4..........4..8...8.....4...48.....4....8.....8...4.4.......8.8...4...
....6...9.6..9....9.....6.....6..9....6..9.....9....6..9......6.....6.9.6..9.....
....6..7..6.7.......7...6.....6.7.....6.....77......6.......7.6.7...6...6...7....
....6.4...64..........4.6.....6....4..64......4.....6........464....6...6....4...
....68...86.............68...86.......6.8..........86....8....6.....6..868.......
...5....9....9..5.95...........5.9..5....9.....9.....5.9...5.........59...59.....
...5...7....7...5..57..........57...5.......77.......5.....57...7....5....5.7....
...5..4....4....5..5..4........5...45..4......4......5.....5.4.4.....5....5..4...
...5.8...8......5..5.....8...8.5....5...8..........8.5...8.5.........5.8.85......
...56.....6.....5..5....6.....65....5.6.............65.....5..6.....65..6.5......
..3.....9....9.3..9....3.........93..3...9.....93.....39...........3..9....9....3
..3....7....7..3....7..3........7.3..3......77..3.....3.....7...7..3........7...3
..3...4....4...3......43..........34.3.4......4.3.....3......4.4...3.........4..3
..3..8...8.....3.......3.8...8....3..3..8.......3..8..3..8.........3...8.8......3
..3.6.....6....3.......36.....6...3..36.........3...6.3.......6....36...6.......3
..35...........35..5...3.......5..3.53..........3....53....5.......3.5....5.....3
.2......9....9...29..2.....2.....9.......9.2...9..2....9..2......2....9....9..2..
.2.....7....7....2..72.....2....7..........277....2.......2.7...72..........7.2..
.2....4....4.....2...24....2.......4...4...2..4...2.......2..4.4.2...........42..
.2...8...8.......2...2...8.2.8..........8..2......28.....82......2.....8.8....2..
.2..6.....6......2...2..6..2..6.......6....2......2.6.....2...6..2..6...6.....2..
.2.5............52.5.2.....2...5....5......2......2..5....25.....2...5....5...2..
.23............3.2...2.3...2......3..3.....2....3.2...3...2......2.3..........2.3
1.......9....91...9.......1.1....9.......91....9.1.....91.........1...9....9...1.
1......7....7.1.....7.....1.1...7.........1.77...1......1...7...7.1.........7..1.
1.....4....4..1.......4...1.1......4...4..1...4..1......1....4.4..1..........4.1.
1....8...8....1..........81.18..........8.1......1.8....18........1....8.8.....1.
1...6.....6...1.........6.1.1.6.......6...1......1..6...1.....6...1.6...6......1.
1..5..........1.5..5......1.1..5....5.....1......1...5..1..5......1..5....5....1.
1.3...........13.......3..1.1.....3..3....1.....31....3.1.........13...........13
12............1..2...2....121.............12.....12.....1.2......21...........21.

the canonicalized 2-rookeries are:
Code: Select all
000000012000012000012000000000000021001200000200100000000021000020000100100000200
000000012000012000012000000000000021001200000200100000000021000020000100100000200
000000012000012000012000000000000021001200000200100000000021000020000100100000200
000000012000012000012000000000000021001200000200100000000021000020000100100000200
000000012001002000020010000000001200000200001210000000000100020002000100100020000
000000012001002000020010000000001200000200001210000000000100020002000100100020000
000000012001002000020010000000001200000200001210000000000100020002000100100020000
000000012001002000020010000000001200000200001210000000000100020002000100100020000
000000012000012000012000000000000021001200000200100000000021000020000100100000200
000000012000012000012000000000000021001200000200100000000021000020000100100000200
000000012001002000020010000000001200000200001210000000000100020002000100100020000
000000012000012000012000000000000021001200000200100000000021000020000100100000200
000000012001002000020010000000001200000200001210000000000100020002000100100020000
000000012000012000012000000000000021001200000200100000000021000020000100100000200
000000012000012000012000000000000021001200000200100000000021000020000100100000200
000000012001002000020010000000001200000200001210000000000100020002000100100020000
000000012001002000020010000000001200000200001210000000000100020002000100100020000
000000012000012000012000000000000021001200000200100000000021000020000100100000200
000000012001002000020010000000001200000200001210000000000100020002000100100020000
000000012000012000012000000000000021001200000200100000000021000020000100100000200
000000012001002000020010000000001200000200001210000000000100020002000100100020000
000000012001002000020010000000001200000200001210000000000100020002000100100020000
000000012000012000012000000000000021001200000200100000000021000020000100100000200
000000012001002000020010000000001200000200001210000000000100020002000100100020000
000000012001002000020010000000001200000200001210000000000100020002000100100020000
000000012001002000020010000000001200000200001210000000000100020002000100100020000
000000012000012000012000000000000021001200000200100000000021000020000100100000200
000000012000012000012000000000000021001200000200100000000021000020000100100000200
000000012000012000012000000000000021001200000200100000000021000020000100100000200
000000012001002000020010000000001200000200001210000000000100020002000100100020000
000000012001002000020010000000001200000200001210000000000100020002000100100020000
000000012000012000012000000000000021001200000200100000000021000020000100100000200
000000012001002000020010000000001200000200001210000000000100020002000100100020000
000000012001002000020010000000001200000200001210000000000100020002000100100020000
000000012000012000012000000000000021001200000200100000000021000020000100100000200
000000012000012000012000000000000021001200000200100000000021000020000100100000200

Two types
Code: Select all
000000012000012000012000000000000021001200000200100000000021000020000100100000200
000000012001002000020010000000001200000200001210000000000100020002000100100020000
From here
Code: Select all
grid # automorphisms, band, and minlex index
123456789457189326869372514214965873635847192978213465381624957546798231792531648 # 36 240 5449015463

Most grids [ 99.99%] are non-automorphic.
From gsfs work, here is the distribution.
Code: Select all
   1 5472170387     [non-automorphic - 1 grid]
   2     548449
   3       7336
   4       2826
   6       1257
   8         29
   9         42
  12         92
  18         85
  27          2
  36         15     [including duk15]
  54         11
  72          2
 108          3
 162          1
 648          1     [MC]

C
coloin
 
Posts: 2515
Joined: 05 May 2005
Location: Devon

Postby coloin » Mon Jan 14, 2008 8:45 pm

Condor wrote:T(0) = 1
T(1) = 46656 = 6^6
T(2) = 838501632 = 6^6 * 2^2 * 4493
T(3) = 5196557037312 = 6^6 * 2^2 * 3433 * 8111
T(4) = 9631742544322560 = 6^6 * 2^7 * 3 * 5 * 19 * 5659037

T(9) = 6670903752021072936960 = 6^6 * 2^14 * 3^2 * 5 * 7 * 27704267971

Condor wrote:The only thing I can add is that for every one of the 46656 templates there is 17972 ways of placing the second template.

I generated all the placing of the "2"s for a fixed "1" template.
Code: Select all
Here is the minlex ordered 2-rookeries
rookery i.d.  # puzz #   perm ,  number of isomorphs in 4493 rookeries
#001#  .......12....12....12.............21....21....21.........1..2..1..2.....2.....1..  #   16 sol.     3
#002#  .......12....12....12.............21....21...12..........1..2.....2..1..2.1......  #   16 sol.     9
#003#  .......12....12....12.............21....21...12..........1..2....12.....2.....1..  #    8 sol.    18
#004#  .......12....12....12.............21...12....12............12.....2..1..2.1......  #    8 sol.    18
#005#  .......12....12....12.............21...12....12............12....12.....2.....1..  #    4 sol.    18
#006#  .......12....12....12.............21...12....2.1...........12.....2..1..12.......  #    8 sol.    18
#007#  .......12....12....12.............21...12....2.1...........12...2....1..1..2.....  #    4 sol.    18
#008#  .......12....12....12.............21..1.2.....2...1......1..2..1..2.....2.....1..  #    8 sol.    18
#009#  .......12....12....12.............21..1.2.....2.1..........12..1..2.....2.....1..  #    4 sol.    36
#010#  .......12....12....12.............21..1.2.....2.1........2..1..1.....2..2....1...  #    4 sol.    36
#011#  .......12....12....12.............21..1.2.....2.1........2.1...1.....2..2.....1..  #    8 sol.    36
#012#  .......12....12....12.............21..1.2....2..1..........12.....2..1..12.......  #    4 sol.    36
#013#  .......12....12....12.............21..1.2....2..1..........12...2....1..1..2.....  #    4 sol.    18
#014#  .......12....12....12.............21..1.2....2..1........2..1...2...1...1.....2..  #    4 sol.    18
#015#  .......12....12....12.............21..12......2.1..........12..1...2....2.....1..  #    8 sol.    36
#016#  .......12....12....12.............21..12......2.1.........21...1.....2..2.....1..  #   16 sol.    18
#017#  .......12....12....12.............21..12.....2....1.......2.1.....1..2..12.......  #    4 sol.    36
#018#  .......12....12....12.............21..12.....2....1.......2.1...2.1.....1.....2..  #    4 sol.    36
#019#  .......12....12....12.............21..12.....2..1..........12......2.1..12.......  #    8 sol.    36
#020#  .......12....12....12.............21..12.....2..1..........12...2....1..1...2....  #    4 sol.    36
#021#  .......12....12....12.............21..12.....2..1.........2.1...2...1...1.....2..  #    4 sol.    36
#022#  .......12....12....12.............21..12.....2..1.........21....2....1..1.....2..  #    8 sol.    18
#023#  .......12....12....12.............211..2.....2..1..........12....1.2.....2....1..  #    8 sol.    18
#024#  .......12....12....12............12....12....12.............2.1...2.1...2.1......  #    8 sol.     1
#025#  .......12....12....12............12....12....12.............2.1..12.....2....1...  #    4 sol.     9
#026#  .......12....12....12............12....12....12............12....12.....2.......1  #    2 sol.     6
#027#  .......12....12....12............12....12....2.1............2.1...2.1...12.......  #    8 sol.     3
#028#  .......12....12....12............12....12....2.1............2.1.2...1...1..2.....  #    4 sol.    18
#029#  .......12....12....12............12....12....2.1...........12.....2....112.......  #    4 sol.     9
#030#  .......12....12....12............12....12....2.1...........12...2......11..2.....  #    2 sol.    18
#031#  .......12....12....12............12...1.2.....2...1.........2.11..2.....2..1.....  #    8 sol.    18
#032#  .......12....12....12............12...1.2.....2...1......1..2..1..2.....2.......1  #    4 sol.    36
#033#  .......12....12....12............12...1.2.....2.1...........2.11..2.....2....1...  #    4 sol.    36
#034#  .......12....12....12............12...1.2.....2.1..........12..1..2.....2.......1  #    2 sol.    36
#035#  .......12....12....12............12...1.2.....2.1........2....11.....2..2....1...  #    2 sol.    36
#036#  .......12....12....12............12...1.2.....2.1........2.1...1.....2..2.......1  #    4 sol.    36
#037#  .......12....12....12............12...1.2....2....1.........2.1.2.1.....1..2.....  #    4 sol.    36
#038#  .......12....12....12............12...1.2....2....1......1..2.....2....112.......  #    4 sol.    36
#039#  .......12....12....12............12...1.2....2....1......1..2...2......11..2.....  #    2 sol.    36
#040#  .......12....12....12............12...1.2....2....1......2....1.2.1.....1.....2..  #    2 sol.    36
#041#  .......12....12....12............12...1.2....2..1...........2.1.2...1...1..2.....  #    4 sol.    18
#042#  .......12....12....12............12...1.2....2..1..........12.....2....112.......  #    2 sol.    36
#043#  .......12....12....12............12...1.2....2..1..........12...2......11..2.....  #    2 sol.    36
#044#  .......12....12....12............12...1.2....2..1........2....1.2...1...1.....2..  #    2 sol.    36
#045#  .......12....12....12............12...1.2....2..1........2.1....2......11.....2..  #    2 sol.    18
#046#  .......12....12....12............12...12......2.1...........2.11...2....2....1...  #    8 sol.    18
#047#  .......12....12....12............12...12......2.1..........12..1...2....2.......1  #    4 sol.    36
#048#  .......12....12....12............12...12......2.1.........2...11.....2..2....1...  #    4 sol.    36
#049#  .......12....12....12............12...12.....2....1.........2.1.2.1.....1...2....  #    4 sol.     9
#050#  .......12....12....12............12...12.....2....1.......2...1.2.1.....1.....2..  #    2 sol.    36
#051#  .......12....12....12............12...12.....2..1..........12...2......11...2....  #    2 sol.    36
#052#  .......12....12....12............12...12.....2..1.........2...1.2...1...1.....2..  #    2 sol.    36
#053#  .......12....12....12............12..2.1.....1...2..........2.1..12.....2....1...  #    4 sol.     9
#054#  .......12....12....12............12..2.1.....1...2.........12.....2....12.1......  #    2 sol.    18
#055#  .......12....12....12............12..2.1.....1...2.........12....12.....2.......1  #    2 sol.    36
#056#  .......12....12....12............12..2.1.....1..2..........12....1.2....2.......1  #    2 sol.    36
#057#  .......12....12....12............12..2.1.....1..2.........2...1..1...2..2....1...  #    2 sol.    36
#058#  .......12....12....12............12.1..2.....2..1..........12....1.2.....2......1  #    4 sol.    36
#059#  .......12....12....12...........1.2...1.2.....2......1...1..2..1..2.....2.....1..  #    4 sol.     6
#060#  .......12....12....12...........1.2...1.2.....2......1...2..1..1.....2..2..1.....  #    4 sol.     6
#061#  .......12....12....12...........1.2...1.2.....2....1.....1..2..1..2.....2.......1  #    2 sol.    36
#062#  .......12....12....12...........1.2...1.2.....2....1.....2....11.....2..2..1.....  #    2 sol.    36
#063#  .......12....12....12...........1.2...1.2....2.....1.....1..2...2......11..2.....  #    2 sol.    18
#064#  .......12....12....12...........1.2...1.2....2.....1.....2....1.2.1.....1.....2..  #    2 sol.    18
#065#  .......12....12....12...........1.2...12......2....1......2...11.....2..2..1.....  #    2 sol.    18
#066#  .......12....12....12...........1.2...12......2....1.....1..2..1...2....2.......1  #    2 sol.    18
#067#  .......12....12....12...........1.2...12.....2.......1....2.1...2.1.....1.....2..  #    2 sol.    36
#068#  .......12....12....12...........1.2...12.....2.......1...1..2...2....1..1...2....  #    2 sol.    36
#069#  .......12....12....12...........1.2...12.....2.....1......2...1.2.1.....1.....2..  #    2 sol.    18
#070#  .......12....12....12...........1.2...12.....2.....1.....1..2...2......11...2....  #    2 sol.    18
#071#  .......12....12....12...........1.2.1...2....2.......1...1..2....12......2....1..  #    4 sol.    18
#072#  .......12....12....12...........1.2.1...2....2.......1...2..1....1...2...2.1.....  #    4 sol.    18
#073#  .......12....12....12...........1.2.1...2....2.....1.....1..2....12......2......1  #    2 sol.    18
#074#  .......12....12....12...........1.2.1...2....2.....1.....2....1..1...2...2.1.....  #    2 sol.    36
#075#  .......12....12....12...........12....12......2....1.....1...2.1...2....2.......1  #    2 sol.    18
#076#  .......12....12....12...........12....12.....2.......1....2.1...2.1.....1......2.  #    2 sol.     6
#077#  .......12....12....12...........12....12.....2.......1...1...2..2....1..1...2....  #    2 sol.     6
#078#  .......12..1..2.....2..1..........21.1..2....2..1.........1.2.....2..1..12.......  #    8 sol.    18
#079#  .......12..1..2.....2..1..........21.1..2....2..1.........1.2...2....1..1..2.....  #    8 sol.    18
#080#  .......12..1..2.....2..1.........12..1..2....2..1...........2.1.2..1....1..2.....  #    8 sol.     9
#081#  .......12..1..2.....2..1.........12..1..2....2..1.........1.2.....2....112.......  #    4 sol.    36
#082#  .......12..1..2.....2..1.........12..1..2....2..1.........1.2...2......11..2.....  #    4 sol.    36
#083#  .......12..1..2.....2..1.......1..2....2....112...........2.1...1....2..2..1.....  #    4 sol.    36
#084#  .......12..1..2.....2..1.......1..2....2....112..........12.....1....2..2.....1..  #    8 sol.    18
#085#  .......12..1..2.....2..1.......1..2....2..1..12...........2...1.1....2..2..1.....  #    4 sol.    36
#086#  .......12..1..2.....2..1.......1..2....2..1..12..........1..2...1..2....2.......1  #    4 sol.    36
#087#  .......12..1..2.....2..1.......1..2....2..1..12..........12.....1....2..2.......1  #    4 sol.    18
#088#  .......12..1..2.....2..1.......1..2..1.2.....2.......1....2.1.....1..2..12.......  #    4 sol.    36
#089#  .......12..1..2.....2..1.......1..2..1.2.....2.......1....2.1...2.1.....1.....2..  #    4 sol.    18
#090#  .......12..1..2.....2..1.......1..2..1.2.....2.......1...1..2...2....1..1...2....  #    4 sol.    18
#091#  .......12..1..2.....2..1.......1..2..1.2.....2.....1......2...1.2.1.....1.....2..  #    4 sol.    18
#092#  .......12..1..2.....2..1.......1..2..1.2.....2.....1.....1..2...2......11...2....  #    4 sol.    18
#093#  .......12..1..2.....2.1..........12..1..2....2....1.........2.1.2.1.....1..2.....  #    4 sol.    18
#094#  .......12..1..2.....2.1..........12..1..2....2....1......1..2.....2....112.......  #    4 sol.    36
#095#  .......12..1..2.....2.1..........12..1..2....2....1......1..2...2......11..2.....  #    2 sol.    36
#096#  .......12..1..2.....2.1..........12..1..2....2....1......2....1.2.1.....1.....2..  #    2 sol.    36
#097#  .......12..1..2.....2.1..........12..1..2....2..1...........2.1.2...1...1..2.....  #    4 sol.    18
#098#  .......12..1..2.....2.1..........12..1..2....2..1..........12.....2....112.......  #    2 sol.    36
#099#  .......12..1..2.....2.1..........12..1..2....2..1..........12...2......11..2.....  #    2 sol.    36
#100#  .......12..1..2.....2.1..........12..1..2....2..1........2....1.2...1...1.....2..  #    2 sol.    36
#101#  .......12..1..2.....2.1..........12..1..2....2..1........2.1....2......11.....2..  #    2 sol.    36
#102#  .......12..1..2.....2.1..........12..1.2.....2....1.........2.1.2.1.....1...2....  #    4 sol.    18
#103#  .......12..1..2.....2.1..........12..1.2.....2....1.......2...1...1..2..12.......  #    2 sol.    36
#104#  .......12..1..2.....2.1..........12..1.2.....2....1.......2...1.2.1.....1.....2..  #    2 sol.    36
#105#  .......12..1..2.....2.1..........12..1.2.....2....1......1..2...2......11...2....  #    2 sol.    36
#106#  .......12..1..2.....2.1..........12..1.2.....2....1......12.....2......11.....2..  #    2 sol.    36
#107#  .......12..1..2.....2.1..........12..1.2.....2..1..........12......2...112.......  #    4 sol.    36
#108#  .......12..1..2.....2.1..........12..1.2.....2..1..........12...2......11...2....  #    2 sol.    18
#109#  .......12..1..2.....2.1..........12..1.2.....2..1.........2...1.2...1...1.....2..  #    2 sol.    18
#110#  .......12..1..2.....2.1.........1.2.....2.1..12..........1..2...1.2.....2.......1  #    2 sol.    36
#111#  .......12..1..2.....2.1.........1.2.....2.1..12..........2....1.1....2..2..1.....  #    2 sol.    36
#112#  .......12..1..2.....2.1.........1.2....2....112...........2.1...1....2..2..1.....  #    2 sol.    36
#113#  .......12..1..2.....2.1.........1.2....2....112..........1..2...1..2....2.....1..  #    2 sol.    36
#114#  .......12..1..2.....2.1.........1.2....2....112..........12.....1....2..2.....1..  #    4 sol.    36
#115#  .......12..1..2.....2.1.........1.2....2..1..12...........2...1.1....2..2..1.....  #    2 sol.    36
#116#  .......12..1..2.....2.1.........1.2....2..1..12..........1..2...1..2....2.......1  #    2 sol.    36
#117#  .......12..1..2.....2.1.........1.2....2..1..12..........12.....1....2..2.......1  #    2 sol.    36
#118#  .......12..1..2.....2.1.........1.2..1..2....2.....1.....1..2...2......11..2.....  #    2 sol.    36
#119#  .......12..1..2.....2.1.........1.2..1..2....2.....1.....2....1.2.1.....1.....2..  #    2 sol.    36
#120#  .......12..1..2.....2.1.........1.2..1.2.....2.......1....2.1.....1..2..12.......  #    2 sol.    18
#121#  .......12..1..2.....2.1.........1.2..1.2.....2.......1...1..2...2....1..1...2....  #    2 sol.    36
#122#  .......12..1..2.....2.1.........1.2..1.2.....2.....1......2...1.2.1.....1.....2..  #    2 sol.    18
#123#  .......12..1..2.....2.1.........1.2..1.2.....2.....1.....1..2...2......11...2....  #    2 sol.    36
#124#  .......12..1..2.....2.1.........1.2..1.2.....2.....1.....12.....2......11.....2..  #    2 sol.    36
#125#  .......12..1..2.....2.1.........12......2.1..12..........1...2..1.2.....2.......1  #    4 sol.    18
#126#  .......12..1..2.....2.1.........12.....2....112...........2.1...1.....2.2..1.....  #    2 sol.    36
#127#  .......12..1..2.....2.1.........12.....2....112..........12.....1.....2.2.....1..  #    2 sol.    36
#128#  .......12..1..2.....2.1.........12...1..2....2.......1...1...2..2....1..1..2.....  #    2 sol.    36
#129#  .......12..1..2.....2.1.........12...1..2....2.......1...2..1...2.1.....1......2.  #    2 sol.    36
#130#  .......12..1..2.....2.1.........12...1.2.....2.......1....2.1...2.1.....1......2.  #    2 sol.    18
#131#  .......12..1..2.....2.1.........12...1.2.....2.......1...1...2..2....1..1...2....  #    2 sol.    36
#132#  .......12..1..2.....2.1.........12...1.2.....2.......1...12.....2....1..1......2.  #    2 sol.    36
#133#  .......12..1..2.....2.1........21....1.....2.2.....1.....1..2...2......11..2.....  #    4 sol.    18
#134#  .......12..1..2.....2.1........21....1.....2.2.....1.....2....1.2.1.....1.....2..  #    4 sol.    18
#135#  .......12..1..2.....2.1........21....1....2..2.....1.....1...2....2....112.......  #    8 sol.     3
#136#  .......12..1..2.....2.1.......1...2..1..2....2.....1.....2....1.2...1...1.....2..  #    2 sol.    18
#137#  .......12..1..2.....2.1.......1...2..1..2....2.....1.....2.1....2......11.....2..  #    2 sol.    36
#138#  .......12..1..2.....2.1.......1..2...1..2....2.......1...2..1...2...1...1......2.  #    2 sol.    18
#139#  .......12..1..2.....2.1.......1..2...1..2....2.......1...2.1....2....1..1......2.  #    2 sol.    36
#140#  .......12..1..2.....2.1.......12.....1.....2.2.....1.....2.1....2......11.....2..  #    4 sol.    18
#141#  .......12..1..2.....2.1.......12.....1....2..2.......1...2.1....2....1..1......2.  #    4 sol.    18
#142#  .......12..1..2....2..1..........12...2..1....1..2.......1..2..1..2.....2.......1  #    4 sol.     9
#143#  .......12..1..2....2..1..........12...2..1....1.2.........2...11.....2..2..1.....  #    2 sol.    36
#144#  .......12..1..2....2..1..........12...2..1...1...2.......1..2...1.2.....2.......1  #    2 sol.    36
#145#  .......12..1..2....2..1..........12...2..1...1..2...........2.1.1..2....2..1.....  #    4 sol.     6
#146#  .......12..1..2....2..1..........12...2..1...1..2.........2...1...1..2..21.......  #    2 sol.    18
#147#  .......12..1..2....2..1..........12...2..1...1..2.........2...1.1....2..2..1.....  #    2 sol.    36
#148#  .......12..1..2....2..1..........12...2..1...1..2........12.....1....2..2.......1  #    2 sol.    18
#149#  .......12..1..2....2..1..........12...21.....1...2..........2.1.1.2.....2....1...  #    4 sol.     3
#150#  .......12..1..2....2..1..........12...21.....1...2.........12.....2....121.......  #    2 sol.    18
#151#  .......12..1..2....2..1..........12...21.....1...2.........12...1.2.....2.......1  #    2 sol.    18
#152#  .......12..1..2....2..1..........12..1.2.....2....1.........2.1..21.....1...2....  #    4 sol.     3
#153#  .......12..1..2....2..1..........12..1.2.....2....1.......2...1...1..2..1.2......  #    2 sol.    18
#154#  .......12..1..2....2..1..........12..1.2.....2....1.......2...1..21.....1.....2..  #    2 sol.    18
#155#  .......12..1..2....2..1.........1.2.....2.1..1.2.........1..2...1.2.....2.......1  #    2 sol.    18
#156#  .......12..1..2....2..1.........1.2.....2.1..1.2.........2....1.1....2..2..1.....  #    2 sol.    18
#157#  .......12..1..2....2..1.........1.2.....2.1..21..........1..2....2.....11..2.....  #    2 sol.    36
#158#  .......12..1..2....2..1.........1.2....2..1..1.2..........2...1.1....2..2..1.....  #    2 sol.    18
#159#  .......12..1..2....2..1.........1.2....2..1..1.2.........1..2...1..2....2.......1  #    2 sol.    18
#160#  .......12..1..2....2..1.........1.2....2..1..1.2.........12.....1....2..2.......1  #    2 sol.    18
#161#  .......12..1..2....2..1.........1.2....2..1..21...........2...1..21.....1.....2..  #    2 sol.    36
#162#  .......12..1..2....2..1.........1.2....2..1..21..........1..2....2.....11...2....  #    2 sol.    36
#163#  .......12..1..2....2..1.........1.2...2...1...1.2.........2...11.....2..2..1.....  #    2 sol.    18
#164#  .......12..1..2....2..1.........1.2...2...1...1.2........1..2..1...2....2.......1  #    2 sol.    36
#165#  .......12..1..2....2..1.........1.2...2...1..1...2.......1..2...1.2.....2.......1  #    2 sol.    18
#166#  .......12..1..2....2..1.........1.2...2...1..1..2.........2...1.1....2..2..1.....  #    2 sol.    18
#167#  .......12..1..2....2..1.........1.2...2...1..1..2........1..2...1..2....2.......1  #    2 sol.    36
#168#  .......12..1..2....2..1.........1.2..1..2....2.....1.....1..2....2.....11..2.....  #    2 sol.    36
#169#  .......12..1..2....2..1.........1.2..1..2....2.....1.....2....1..21.....1.....2..  #    2 sol.    18
#170#  .......12..1..2....2..1.........1.2..1.2.....2.....1......2...1..21.....1.....2..  #    2 sol.    18
#171#  .......12..1..2....2..1.........1.2..1.2.....2.....1.....1..2....2.....11...2....  #    2 sol.    18
#172#  .......12..1..2....2..1.........12.....2....121...........2.1....21.....1......2.  #    2 sol.    18
#173#  .......12..1..2....2..1.........12.....2....121..........1...2...2...1..1...2....  #    2 sol.    18
#174#  .......12..1..2....2..1.........12.....2....121..........12......2...1..1......2.  #    2 sol.     6
#175#  .......12..1..2....2..1.........12...1..2....2.......1...1...2...2...1..1..2.....  #    2 sol.    18
#176#  .......12..1..2....2..1.........12...1.2.....2.......1....2.1....21.....1......2.  #    2 sol.    18
#177#  .......12..1..2....2..1.........12...1.2.....2.......1...1...2...2...1..1...2....  #    2 sol.    18
#178#  .......12..1..2....2..1.......1...2..1..2....2.....1.....2....1..2..1...1.....2..  #    2 sol.    18
#179#  .....1..2..2....1..1..2.........2..1..1...2..2..1.........1..2..2....1..1..2.....  #    2 sol.     9
#180#  .....1..2..2....1..1..2.........21...2.1.....1......2.....1.2....12.....2.......1  #    2 sol.     6
#181#  .....1..2..2....1..1..2........1.2....12.....2.......1...1...2..2....1..1....2...  #    2 sol.     1
                                                                                                       ------
                                                                                                       4493     

The number of isomorphs explains the frequency chart.

Given a full box with 9 clues these are the average solution rates for the 2-rookeries.
Code: Select all
16 perm  - 2400000000 - 2600000000 sol.                                                                 
 8 perm  - 2100000000 - 2600000000 sol.                                                                 
 4 perm  - 1370000000 - 1900000000 sol.                                                                 
 2 perm  - 0940000000 - 1300000000 sol.


Here are the different 2-rookeries [all 2-perm] in the SFB grid
Code: Select all
1    # .......12....12....12............12...1.2....2..1........2.1....2......11.....2..#  045    18
1    # .......12....12....12...........12....12.....2.......1....2.1...2.1.....1......2.#  076     6
1    # .......12..1..2....2..1..........12...21.....1...2.........12...1.2.....2.......1#  151    18
1    # .......12..1..2....2..1..........12..1.2.....2....1.......2...1..21.....1.....2..#  154    18
1    # .......12..1..2....2..1.........1.2....2..1..21...........2...1..21.....1.....2..#  161    36
2    # .......12....12....12...........1.2...12.....2.....1......2...1.2.1.....1.....2..#  069    18
3    # .......12....12....12............12....12....2.1...........12...2......11..2.....#  030    18
3    # .......12....12....12...........1.2...12.....2.....1.....1..2...2......11...2....#  070    18
3    # .......12....12....12...........1.2.1...2....2.....1.....1..2....12......2......1#  073    18
3    # .......12....12....12...........12....12......2....1.....1...2.1...2....2.......1#  075    18
4    # .......12....12....12............12...1.2....2..1..........12.....2....112.......#  042    36
4    # .......12....12....12...........1.2...1.2.....2....1.....1..2..1..2.....2.......1#  061    36
4    # .......12....12....12...........1.2...1.2.....2....1.....2....11.....2..2..1.....#  062    36
5    # .......12....12....12...........1.2.1...2....2.....1.....2....1..1...2...2.1.....#  074    36
--
36



C
coloin
 
Posts: 2515
Joined: 05 May 2005
Location: Devon

Re: Structures of the solution grid

Postby dukuso » Sat May 29, 2010 3:30 pm

181 essentially different 2-rookeries ? I only have 170
and 92053 3-rookeries
how many 4-rookeries ? 5-rookeries ?

1 equivalence-class of 1-rookeries
170 equivalence classes of 2-rookeries
92053 equivalence-classes of 3-rookeries
...
1 equivalence-class of 8-rookeries
1 equivalence-class of 9-rookeries

they are equivalent when they can be mapped into each other by our symmetrygroup
of 6^8*2 elements (no permutation of symbols)

a k-rookery just consists of k*9 cells of an 9*9 square such that there are k cells from the
k-rookery in each row,column,block


so, in the above list it doesn't matter where there are 1s or 2s, we just have "filled" and "empty"
dukuso
 
Posts: 479
Joined: 25 June 2005

Re: Structures of the solution grid

Postby dukuso » Sat May 29, 2010 7:28 pm

1 5472170387 [non-automorphic - 1 grid]
2 548449
3 7336
4 2826
6 1257
8 29
9 42
12 92
18 85
27 2
36 15 [including duk15]
54 11
72 2
108 3
162 1
648 1 [MC]

Condor wrote:T(0) = 1
T(1) = 46656 = 6^6
T(2) = 838501632 = 6^6 * 2^2 * 4493
T(3) = 5196557037312 = 6^6 * 2^2 * 3433 * 8111
T(4) = 9631742544322560 = 6^6 * 2^7 * 3 * 5 * 19 * 5659037

T(9) = 6670903752021072936960 = 6^6 * 2^14 * 3^2 * 5 * 7 * 27704267971

Red Ed elucidated the the 3-rookery number
there are 259272 essentially-different 3-rookeries.

fruitless-sudoku-discoveries-t1846-30.html

A k-rookery is defined by the cells given by k numbers. In general in each sudoku grid there is k!/9!(9-k)! k-rookeries. The contents of the rookery don't matter.

sets of templates
dukuso
 
Posts: 479
Joined: 25 June 2005

Re: Structures of the solution grid

Postby RW » Sat May 29, 2010 8:22 pm

dukuso wrote:how many 4-rookeries ? 5-rookeries ?

Shouldn't there be exactly as many 5-rookeries as there is 4-rookeries?

RW
RW
2010 Supporter
 
Posts: 1010
Joined: 16 March 2006

Re: Structures of the solution grid

Postby dukuso » Sun May 30, 2010 2:32 pm

yes
dukuso
 
Posts: 479
Joined: 25 June 2005

Re: Structures of the solution grid

Postby coloin » Tue Jun 01, 2010 9:46 am

So..... 181 different 2-rookeries.
dukuso says there are 170 2-rookery templates.

this means 11 different 2-rookery templates have two ways to insert a 2-rookery.

Solution Grids in U-Space (Unavoidable Sets)

has this breakdown of the 2-rookeries - and many worthy diagams relevant to this thread
Code: Select all
18
14+4
12+6
10+8
10+4+4
8+6+4
6+6+6
6+4+4+4

C
coloin
 
Posts: 2515
Joined: 05 May 2005
Location: Devon

Re: Structures of the solution grid

Postby dukuso » Tue Jun 01, 2010 10:51 am

2-rookeries containing
this sub-2-rookery (rookery-band)

Code: Select all
+---+---+---+
|1..|2..|...|
|2..|...|1..|
|...|1..|2..|
+---+---+---+


will have 2 "solutions", you can exchange
1 and 2 to get a different 2-sudoku


so

Code: Select all
+---+---+---+
|x..|x..|...|
|x..|...|x..|
|...|x..|x..|
+---+---+---+


is an unavoidable set


you need 2 clues to solve such a 2 rookery uniquely.


making rookery-puzzles ...
how many clues are needed (minimum) to solve a 3-rookery,4-rookery,... ?

has it been done here ?

-----edit----------
checking gordon's 17s, the minimum numbers of clues required to uniquely
solve a 1,2,..,9 rookery are 0,1,2,3,5,7,10,13,17

so we can solve a 6-rookery with 7 clues !
Check all ~90000 6 rookeries , put 7 clues from {1,..,6} inside it so to solve it and 10 clues
from {7,8,9} outside it and check whether you get a 17 ?
dukuso
 
Posts: 479
Joined: 25 June 2005

Re: Structures of the solution grid

Postby gsf » Tue Jun 01, 2010 1:15 pm

dukuso wrote:checking gordon's 17s, the minimum numbers of clues required to uniquely
solve a 1,2,..,9 rookery are 0,1,2,3,5,7,10,13,17

so we can solve a 6-rookery with 7 clues !
Check all ~90000 6 rookeries , put 7 clues from {1,..,6} inside it so to solve it and 10 clues
from {7,8,9} outside it and check whether you get a 17 ?

this sounds like a plan for re-energizing the search for all 17s
random search seems to have taken all the low hanging fruit
gsf
2014 Supporter
 
Posts: 7306
Joined: 21 September 2005
Location: NJ USA

PreviousNext

Return to General