Sohei_4

For fans of Killer Sudoku, Samurai Sudoku and other variants

Sohei_4

Postby Hajime » Tue Feb 01, 2022 4:54 pm

All next 3 puzzles are Sohei-1 arrangements with 4 sudoku's and 1 box overlap.
2 are Asterisk and 2 are SudokuX, all the same, symmetric.
Image
For the Paper & Pencil Solvers, Only Naked/Hidden Pairs/Triples; SER=4.0
Code: Select all
#4//H4,A/B16,X/N16,X/H28,A
.8.3.1.9...3...6..4.6.5.1.3...8.9...2.......1....1.......1.4................9....
.........5.............5.....62...8....91......43...5......3...4.................
.................1...5......3...18......86....6...27.....9.............6.........
....1................7.5.......6....6.......4...5.1...7.2.4.9.5..9...8...6.2.3.4.

Testing my X-, XY- and AIC-chains; SER < 8
Hidden Text: Show
Code: Select all
#4//H4,A/B16,X/N16,X/H28,A
..52.67..9..4.7..3..........4.5.3.8..2.....1.....8........4................8.9...
..3.26......7..........3.............3....2.1..............5......8.......7.91...
...13.5.......7......8..............4.8....2.............4..........6......39.4..
...8.1................9........7.....9.....3..5.3.8.6..........6..2.7..1..24.35..

Diabolic, Testing My Forced Chains/Nets; SER > 8
Hidden Text: Show
Code: Select all
#4//H4,A/B16,X/N16,X/H28,A
.7.....2...56.79...2.948.7.....1.............36.8.2.51...........................
..........8..4.........7...917.8........14...846.5.........5....3..2.............
.............5..7....9.........1.759...58........3.186...3.........2..9..........
...........................27.5.6.34.............2.....2.793.4...82.43...3.....1.
User avatar
Hajime
 
Posts: 1022
Joined: 20 April 2018
Location: Netherlands

Re: Sohei_4

Postby creint » Tue Feb 01, 2022 8:02 pm

First one only two layers of locked singles, no sets needed.
creint
 
Posts: 340
Joined: 20 January 2018

Postby 1to9only » Thu Feb 17, 2022 10:34 am

I rewrote some of my gattai solving code. The rating for the 1st sohei is ED=2.9/1.2/1.2 (2.9=generalized intersections), confirming creint's earlier post.
Code: Select all
.8.3.1.9...3...6..4.6.5.1.3...8.9...2.......1....1.......1.4................9.... ED=2.9/1.2/1.2
.........5.............5.....62...8....91......43...5......3...4................. ED=2.9/1.2/1.2
.................1...5......3...18......86....6...27.....9.............6......... ED=2.9/1.2/1.2
....1................7.5.......6....6.......4...5.1...7.2.4.9.5..9...8...6.2.3.4. ED=2.8/1.2/1.2
ED=2.9/1.2/1.2

Solution: Show
Code: Select all
587361294913427658426958173164839527279645831358712469635174982791286345842593716
841729635532648791769135842376254189258917463914386257187493526423561978695872314
982614357345278691716539284534791862127386549869452713473965128251847936698123475
526819473978436251314725698251364789683972514497581326732148965149657832865293147
1to9only
 
Posts: 4073
Joined: 04 April 2018

Re: Sohei_4

Postby Hajime » Sat Feb 26, 2022 1:56 pm

Curious... I generated puzzle 1 with Naked/Hidden Pairs/Triples only.
And now it is solvable also with locked singles in 2 houses (pointing/claiming).
What is exactly the definition of generalized intersections?
- can be 2 houses where at least one house is not type row,col or box? Puzzle 1 complies.
- must be at least 3 houses independent of the type? Not needed for puzzle 1.
User avatar
Hajime
 
Posts: 1022
Joined: 20 April 2018
Location: Netherlands

Postby 1to9only » Mon Feb 28, 2022 2:51 pm

Related: http://forum.enjoysudoku.com/generalized-methods-t38209.html

The 1st sohei, grid 1, 1st generalized intersection:
2.9, Generalized Intersection: Cells R5C2,R7C7: 9 in asterisk: r5c7<>9, r7c2<>9
Image

The 1st sohei, grid 2, 1st generalized intersection:
2.9, Generalized Intersection: Cells R2C2,R6C6: 6 in antidiagonal(\): r2c6<>6
Image
1to9only
 
Posts: 4073
Joined: 04 April 2018

Re: Sohei_4

Postby Hajime » Wed Mar 02, 2022 4:01 pm

@1to9only, Both your examples involve 3 houses:
A row, a column and a (diagonal Or asterisk).
There is a solution path with only pointing/claiming of 2 houses methods.
User avatar
Hajime
 
Posts: 1022
Joined: 20 April 2018
Location: Netherlands


Return to Sudoku variants