Red Ed wrote:PET, wow. I was aware of it but never had cause to learn & apply it. I'm impressed!
n Nn
0 1
1 322
2 33,135,278
3 63,971,492,029
4 2,420,865,426,641
5 2,420,865,426,641
6 63,971,492,029
7 33,135,278
8 322
9 1
JPF wrote:Here are # of e-d patterns having n clues in each box.
- Code: Select all
n Nn
0 1
1 322
2 33,135,278
3 63,971,492,029
4 2,420,865,426,641
5 2,420,865,426,641
6 63,971,492,029
7 33,135,278
8 322
9 1
1 clue in one box - 1 pattern
3 clues in a band - one clue in a box - 3 patterns
6 clues in 2 bands - one clue in a box - 36 patterns
8 clues in 8 boxes - 385 patterns
9 clues in 9 boxes - 322 patterns
coloin wrote:Well it seems that if you don't have an empty box there are large reductions in the possibilities
- Code: Select all
...
6 clues in 2 bands - one clue in a box - 32 patterns
...
1 ...............................................X..X..X....................X..X..X
2 ...............................................X..X..X....................X..X.X.
3 ...............................................X..X..X....................X.X..X.
4 ...............................................X..X..X...................X..X..X.
5 ...............................................X..X..X.................X..X..X...
6 ...............................................X..X..X.................X..X.X....
7 ...............................................X..X..X.................X.X..X....
8 ...............................................X..X..X................X...X..X...
9 ...............................................X..X..X................X...X.X....
10 ...............................................X..X..X................X..X..X....
11 ...............................................X..X..X........X.....X.....X......
12 ...............................................X..X..X........X.....X....X.......
13 ...............................................X..X..X........X....X.....X.......
14 ...............................................X..X..X.......X.....X.....X.......
15 ............................................X..X..X....................X..X..X...
16 ............................................X..X..X....................X..X.X....
17 ............................................X..X..X....................X.X..X....
18 ............................................X..X..X...................X...X..X...
19 ............................................X..X..X...................X...X.X....
20 ............................................X..X..X...................X..X..X....
21 ............................................X..X..X.................X.....X.....X
22 ............................................X..X..X.................X.....X....X.
23 ............................................X..X..X.................X....X......X
24 ............................................X..X..X.................X....X.....X.
25 ............................................X..X..X.................X.X..X.......
26 ............................................X..X..X................X.....X.....X.
27 ............................................X..X..X...........X.....X.....X......
28 ............................................X..X..X...........X.....X....X.......
29 ............................................X..X..X...........X....X.....X.......
30 ............................................X..X..X..........X......X.....X......
31 ............................................X..X..X..........X......X....X.......
32 ............................................X..X..X..........X.....X.....X.......
33 ...................................X.....X.....X..............X.....X.....X......
34 ...................................X.....X.....X..............X.....X....X.......
35 ...................................X.....X.....X..............X....X.....X.......
36 ...................................X.....X.....X.............X.....X.....X.......
18 184060159680 1.84e11
19 580219975879 5.80e11
20 1726649409444 1.72e12
minimal min and non-min total [x 5e9]
18 4.625e-01 --- 2.3e9
19 2.219e+03 --- 1.1e13
| 20 3.231e+06 3.438e+06 1.7e16
..................123456789961524378742183596835679142658731924374962815219845637# 2 empty rows
+---+---+---+
|...|...|...|
|...|...|...|
|123|456|789|
+---+---+---+
|961|524|378|
|742|183|596|
|835|679|142|
+---+---+---+
|658|731|924|
|374|962|815|
|219|845|637|
+---+---+---+
and there are more different patterns which are maximal [adding one more clue - gives a valid pattern]
......614......927......538...589461...372895...164273123456789985217346476893152# 3 empty boxes
........5........8..7693421..5982167..1574932..9361854..4827513..8139246123456789# blue
.....9..5.....2..3.....7..2...578436456321789873964251917285364564793128382416597# 2 clues in a band
.....1.52.....4.37.....8.91...927143...183265123456789...732514317645928254819376# serg basic magic pattern
......624......573......198......251......837..2..3946123456789746928315895137462# serg 4 nearly empty boxes
.....3.17.....8.24.....1.35...827541...615398...394276123456789679182453485739162# serg variatons
.....8.26.....7.13.....5.97....59364....82971....13258456321789392876145781594632# serg variatons
....92.87....13.64....57.39....74852....61793....38416...345678456789321873126945# serg variatons