Hannari

Post puzzles for others to solve here.

Hannari

Postby shye » Thu Sep 16, 2021 9:20 pm

Code: Select all
+-------+-------+-------+
| . . 1 | 3 5 7 | 9 . . |
| . . 9 | 2 . 1 | 7 . . |
| . . . | . 6 . | . . . |
+-------+-------+-------+
| 3 . . | . . . | . . 2 |
| . 1 . | . 2 . | . 4 . |
| 5 . . | . . . | . . 6 |
+-------+-------+-------+
| . 2 . | 1 . 4 | . 8 . |
| 1 . 6 | . 9 . | 4 . 7 |
| . 8 . | . 7 . | . 1 . |
+-------+-------+-------+
..13579....92.17......6....3.......2.1..2..4.5.......6.2.1.4.8.1.6.9.4.7.8..7..1.

estimated rating: 6.6
spent maybe too much time fiddling with the little details of this ヽ(´▽`)/
User avatar
shye
 
Posts: 332
Joined: 12 June 2021

Re: Hannari

Postby totuan » Fri Sep 17, 2021 2:21 am

shye wrote:estimated rating: 6.6
spent maybe too much time fiddling with the little details of this ヽ(´▽`)/

I do not know what you meant, my path's one step - eliminated 2r1c8, and stte.

Thanks for the puzzle.
totuan
totuan
 
Posts: 249
Joined: 25 May 2010
Location: vietnam

Re: Hannari

Postby denis_berthier » Fri Sep 17, 2021 4:45 am

.
Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------+-------------------+-------------------+
   ! 2468  46    1     ! 3     5     7     ! 9     26    48    !
   ! 468   3456  9     ! 2     48    1     ! 7     356   3458  !
   ! 2478  3457  34578 ! 489   6     89    ! 2358  235   1     !
   +-------------------+-------------------+-------------------+
   ! 3     4679  478   ! 45678 148   568   ! 158   579   2     !
   ! 678   1     78    ! 56789 2     35689 ! 358   4     358   !
   ! 5     479   2     ! 478   148   38    ! 138   379   6     !
   +-------------------+-------------------+-------------------+
   ! 79    2     57    ! 1     3     4     ! 6     8     59    !
   ! 1     35    6     ! 58    9     258   ! 4     235   7     !
   ! 49    8     345   ! 56    7     256   ! 235   1     359   !
   +-------------------+-------------------+-------------------+


There is a 1-step solution in W8:

Code: Select all
whip[8]: r1n2{c1 c8} - r1n6{c8 c2} - r2c1{n6 n4} - r9n4{c1 c3} - c3n3{r9 r3} - c2n3{r3 r8} - r8c8{n3 n5} - r3c8{n5 .} ==> r1c1≠8
stte


But that seems unreasonably complicated, considering there's an elementary simplest-first solution in S+BC3:
Code: Select all
hidden-pairs-in-a-column: c8{n7 n9}{r4 r6} ==> r6c8≠3, r4c8≠5
finned-x-wing-in-rows: n3{r8 r2}{c2 c8} ==> r3c8≠3
biv-chain[3]: r1c2{n4 n6} - r1c8{n6 n2} - b1n2{r1c1 r3c1} ==> r3c1≠4
biv-chain[3]: r2c5{n8 n4} - b3n4{r2c9 r1c9} - r1n8{c9 c1} ==> r2c1≠8
naked-pairs-in-a-block: b1{r1c2 r2c1}{n4 n6} ==> r3c3≠4, r3c2≠4, r2c2≠6, r2c2≠4, r1c1≠6, r1c1≠4
singles ==> r3c4=4, r2c5=8, r3c6=9, r5c4=9
whip[1]: r5n7{c3 .} ==> r4c2≠7, r4c3≠7, r6c2≠7
hidden-single-in-a-column ==> r3c2=7
naked-pairs-in-a-block: b1{r1c1 r3c1}{n2 n8} ==> r3c3≠8
whip[1]: c3n8{r5 .} ==> r5c1≠8
x-wing-in-columns: n3{c2 c8}{r2 r8} ==> r2c9≠3
finned-x-wing-in-columns: n5{c2 c8}{r8 r2} ==> r2c9≠5
stte


Shye, why do you always write "estimated rating" instead of "rating" or "SER"... Are you using another software than SE for your ratings?
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Hannari

Postby marek stefanik » Fri Sep 17, 2021 11:48 am

Most likely similar to totuan's:
Code: Select all
.-------------------.--------------------.-----------------.
| 2468  46    1     | 3       5    7     | 9     6–2  48   |
| 468   3456  9     | 2       48   1     | 7     356  3458 |
| 2478  3457 *35–478| 489     6    89    | 2358 *235  1    |
:-------------------+--------------------+-----------------:
| 3     4679  478   | 456789  148  5689  | 158   579  2    |
| 6789  1     78    | 56789   2    35689 | 358   4    3589 |
| 5     479   2     | 4789    148  389   | 138   379  6    |
:-------------------+--------------------+-----------------:
| 79    2    *57    | 1       3    4     | 6     8    59   |
| 1    *35    6     | 58      9    258   | 4    *235  7    |
| 49    8    *345   | 56      7    256   | 235   1    359  |
'-------------------'--------------------'-----------------'
Whichever digit appears in r8c2 is forced into r3c3 (–478r3c3) and absent from r38c8 => remote triple, –2r1c8, stte

5 Truths = {35C3 3N8 8N28}
9 Links = {2c8 35r3 35r8 35c8 35b7}
(add link 3n3 for –478r3c3)
(if we use 2-links 3* and 5* instead of 4 links for each of them, we get rank0)

Marek
marek stefanik
 
Posts: 360
Joined: 05 May 2021

Re: Hannari

Postby shye » Fri Sep 17, 2021 2:39 pm

totuan wrote:I do not know what you meant, my path's one step - eliminated 2r1c8, and stte.

just meant that i was being picky while making the puzzle lol, the main idea of it took a few minutes to set up but i spent the best of an hour or two being fussy over the resolution stages lol. looks like you got the elimination i was going for though! care to share how? :)

denis_berthier wrote:Shye, why do you always write "estimated rating" instead of "rating" or "SER"... Are you using another software than SE for your ratings?

i use yzf_sudoku to create my puzzles, so its convenient for me to use the approximate rating value on that software since i dont use SE. im aware its not precise so i note it as an estimation, just so people have a vague idea of what difficulty to expect before trying the puzzle :>
im a fan of this step in your simplest-first path: biv-chain[3]: r2c5{n8 n4} - b3n4{r2c9 r1c9} - r1n8{c9 c1} ==> r2c1≠8
an m-wing i believe? the pair it gives in b1 is lovely :D

marek stefanik wrote:Whichever digit appears in r8c2 is forced into r3c3 (–478r3c3) and absent from r38c8 => remote triple, –2r1c8, stte

always just what i was going for ✦ ヮ ✦ the equivalence between r8c2 & r3c3 was how i thought of it too, completing the [235] als in c8
another very similar way to view it, (which is probably the same as the rank0 pattern with 2-links) is a bivalue oddagon on [35] using the empty rectangle in b1 to ensure r8c2 and r3c8 are different. guardians 2r38c8
User avatar
shye
 
Posts: 332
Joined: 12 June 2021

Re: Hannari

Postby totuan » Fri Sep 17, 2021 3:28 pm

shye wrote:just meant that i was being picky while making the puzzle lol, the main idea of it took a few minutes to set up but i spent the best of an hour or two being fussy over the resolution stages lol. looks like you got the elimination i was going for though! care to share how? :)

Again, thanks for your puzzle. My path’s not nice as yours and marek’s :D
Code: Select all
 *--------------------------------------------------------------------*
 | 2468   46     1      | 3      5      7      | 9      6-2    48     |
 | 468   *3456   9      | 2      48     1      | 7     *356   *3458   |
 | 2478   3457   34578  | 489    6      89     | 2358  %235    1      |
 |----------------------+----------------------+----------------------|
 | 3      4679   478    | 45678  148    568    | 158    79     2      |
 | 678    1      78     | 56789  2      35689  | 358    4      358    |
 | 5      479    2      | 478    148    38     | 138    79     6      |
 |----------------------+----------------------+----------------------|
 | 79     2      57     | 1      3      4      | 6      8      59     |
 | 1    *35     6       |#58     9     #258    | 4     *235    7      |
 | 49     8      345    | 56     7      256    | 235    1      359    |
 *--------------------------------------------------------------------*

Look at 3’s and 5’s on R28, if r8c46<>5 => pair(35)R28 lead to eliminate (35)r3c8.

(2)r8c8=(28-5)r8c46=(35)[r8c8=r8c2-r2c2=r2c89]-(35=2)r3c8 => r1c8<>2, stte

totuan
totuan
 
Posts: 249
Joined: 25 May 2010
Location: vietnam

Re: Hannari

Postby jco » Fri Sep 17, 2021 3:30 pm

I found a solution using an almost discontinuous loop as follows.
Code: Select all
.---------------------------------------------------------.
|B2468 C46    1     | 3      5    7     | 9    D26   48   |
|B468  c3456  9     | 2      48   1     | 7   eE356 d3458 |
|B2478  3457 b34578 | 489    6    89    | 2358 d235  1    |
|-------------------+-------------------+-----------------|
| 3     4679  478   | 45678  148  568   | 158   79   2    |
| 678   1     78    | 56789  2    35689 | 358   4    358  |
| 5     479   2     | 478    148  38    | 138   79   6    |
|-------------------+-------------------+-----------------|
| 79    2     57    | 1      3    4     | 6     8    59   |
| 1    g35    6     | 58     9    258   | 4    f235  7    |
|A49    8   ha35-4  | 56     7    256   | 235   1    359  |
'---------------------------------------------------------'


If r2c8 <> 3, we have a discontinuous loop (DL) that places 3 at r9c3:

(3)r9c3 = r3c3 - r2c2 *=* (3)r2c9 - (3)r23c8 = r8c8 - r8c2 = (3)r9c3

But the chain (4)r9c1 = r123c1 - (4=6)r1c2 - r1c8 = (6-3)r2c8 = DL

shows that (4)r9c1 == (3)r9c3, so -4 r9c3; ste
JCO
jco
 
Posts: 757
Joined: 09 June 2020

Re: Hannari

Postby P.O. » Fri Sep 17, 2021 5:10 pm

Code: Select all
after singles:

f246+8   4×6     1       3       5       7       9      l-2+6    e+48               
c(4-68) j-3456   9       2      c(48)    1       7      k*356   kd*3-458             
g+2478   3457    34578   489     6       89      2358   l2-35     1               
 3      a4-679   478     456789  148     5689    158     579      2               
b+6789   1       78      56789   2       35689   358     4        3589             
 5       479     2       4789    148     389     138     379      6               
h+79     2      i+5-7    1       3       4       6       8        59               
 1      i+3-5    6       58      9       258     4      l2-35     7               
 49      8       345     56      7       256     235     1        359             

depth: 8  candidate: 6  from cell
(((1 2 1) (4 6)))

((6 0) (4 2 4) (4 6 7 9))
((6 0) (5 1 4) (6 7 8 9))
((4 1 1 201) ((2 1 1) (4 6 8)) ((2 5 2) (4 8)))
((4 2 12) (1 9 3) (4 8))
((8 3 10) (1 1 1) (2 4 6 8))
((2 4 10) (3 1 1) (2 4 7 8))
((7 5 10) (7 1 7) (7 9))
((3 6 103) (8 2 7) (3 5))
((3 7 1 2) ((2 8 3) (3 5 6)) ((2 9 3) (3 4 5 8)))
((6 8 152) (1 8 3) (2 6))

ste.
P.O.
 
Posts: 1764
Joined: 07 June 2021

Re: Hannari

Postby shye » Fri Sep 17, 2021 7:15 pm

totuan wrote:Look at 3’s and 5’s on R28, if r8c46<>5 => pair(35)R28 lead to eliminate (35)r3c8.

(2)r8c8=(28-5)r8c46=(35)[r8c8=r8c2-r2c2=r2c89]-(35=2)r3c8 => r1c8<>2, stte

ooh this is lovely, the resulting 35 pair giving finned x-wings ☆ ヮ ☆
reminds me of this
User avatar
shye
 
Posts: 332
Joined: 12 June 2021

Re: Hannari

Postby eleven » Fri Sep 17, 2021 10:51 pm

marek stefanik wrote:Whichever digit appears in r8c2 is forced into r3c3 (–478r3c3) and absent from r38c8 => remote triple, –2r1c8

Thanks for this example, shye (they are rare).
I see r8c2 as the base cell with 35, and r38c8 as the target cells.
Both base digits (via r23c2 or column 3) also must be in r3c3 and therefore missing in both r38c8, forcing a pair there with 2 (and the other base digit).

[Added:] For the 35 oddagons with guardians 2r38c8 there are 2 ways, either using the strong link between r2c2 and r2c89 for both 3 and 5, or the one between r23c2 and r3c3.
eleven
 
Posts: 3174
Joined: 10 February 2008

Re: Hannari

Postby denis_berthier » Sat Sep 18, 2021 5:47 am

shye wrote:im a fan of this step in your simplest-first path: biv-chain[3]: r2c5{n8 n4} - b3n4{r2c9 r1c9} - r1n8{c9 c1} ==> r2c1≠8
an m-wing i believe?

Hi Shye,
Like you, I use a solver and can find only what it finds.
SudoRules doesn't have XYWZTUVLGBTQF wings. Bivalue-chains are so simple chains that I didn't feel useful to code zillions of special cases.
Maybe someone else more knowledgeable about these particular cases can answer whether this is (equivalent to) and m-wing.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Hannari

Postby marek stefanik » Sat Sep 18, 2021 12:49 pm

totuan wrote:My path’s not nice as yours [shye's] and marek’s :D
I think they're more similar than you think.
In your path r3c8 and r8c2 are connected via 35r2, also creating a remote triple with r8c8.
In our paths you can find similar almost-fishes, in mine almost-kites 35r8c3\r3c8b7 and in shye's almost-ERs 35r8b1\r3c28 with the same guardians.
The only difference is that the fishes use 5r8c46 as fins, instead of 2r8c8 (externals of the 35r8c28, instead of the equivalent internal).

eleven wrote:Thanks for this example, shye (they are rare).
Yes, very rare in computer-generated puzzles, but we've seen some great hand-crafted puzzles with them already.
Just a few examples for anyone interested:
Shye's Sparkler somehow contains two of these gems.
Jovi_al01's Cobra Roll has actually a remote quadruple.
I wonder if one day we're gonna see a remote octuple creating a single in an untouched cell.

shye wrote:biv-chain[3]: r2c5{n8 n4} - b3n4{r2c9 r1c9} - r1n8{c9 c1} ==> r2c1≠8
an m-wing i believe? the pair it gives in b1 is lovely :D
Yes, it's an m-wing.

Marek
marek stefanik
 
Posts: 360
Joined: 05 May 2021

Re: Hannari

Postby shye » Sun Sep 19, 2021 8:55 am

denis_berthier wrote:Like you, I use a solver and can find only what it finds.
SudoRules doesn't have XYWZTUVLGBTQF wings. Bivalue-chains are so simple chains that I didn't feel useful to code zillions of special cases.
Maybe someone else more knowledgeable about these particular cases can answer whether this is (equivalent to) and m-wing.

was asking moreso to verify that im understanding the notation right 。•́ < •̀。 i do agree somewhat that theres perhaps too much names for things that could be simplified, especially the wxyz-type wings that SE has, but i think the basic wings (y, w, m, l, auau) having names makes sense, especially when ALS and other extensions of them are brought in. also, i may use a solver to construct puzzles but i like to solve by hand :)

eleven wrote:Thanks for this example, shye (they are rare).

my pleasure! theyre definitely very particular to set up which is probably why theyre not so common in generated puzzles, like marek mentioned

marek stefanik wrote:I wonder if one day we're gonna see a remote octuple creating a single in an untouched cell.

im not gonna be the one to try and set that nightmare up :lol: but id definitely be amazed to see even higher levels of these remote sets
User avatar
shye
 
Posts: 332
Joined: 12 June 2021

Re: Hannari

Postby denis_berthier » Mon Sep 20, 2021 3:37 am

shye wrote: also, i may use a solver to construct puzzles but i like to solve by hand

I still solve some puzzles by hand, but it is mainly to preserve my ability to find my chains in a real puzzle. I think I'm really good at it, because I don't have to memorise zillions of specific rules. And that was my precise purpose in defining my chain rules:
- there should be few enough of them to make them easy to memorise; in practice, only 5 useful types of chains (with clear relations between them): bivalue-chains, z-chains, t-whips, whips, g-whips;
- they should be simple enough to be easily found on a grid; in practice, one only needs very short chains for any human solvable puzzle;
- and they should be powerful enough to solve any puzzle a human solver would consider solving; this is largely proven by my stats.

As you can see, this approach is totally opposed to exhibiting as many abstruse rules as possible.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris


Return to Puzzles