shye wrote:unorthodox quadruple
Great solution !
Here is a complex alternative:
Note the ALS's 12349 in r78c45 (#) and 1259 in r4c789 (@).
- Code: Select all
*---------------------------------------------------------------------------------*
| 467 4689 2 | 3 1689 1789 | 5 78 14 |
| 3567 1 3578 | 267 4 278 | 23 9 78 |
| 347 3489 34789 | 5 189 12789 | 14 23 6 |
|-----------------------------+-------------------------+-------------------------|
| B1234-5 7 6 | A149 8-1359 348-19 | @129 @25 @159 |
| 8 35 135 | 1679 2 1379 | 1679 4 1579 |
| 9 245 145 | 167-4 156 147 | 8 2567 3 |
|-----------------------------+-------------------------+-------------------------|
| x13467 34689 134789 | #149 #139 5 | 34679 3678 2 |
| y23457 234589 345789 | #249 #39 6 | 3479 1 45789 |
| *123456 234569 13459 | 8 7 1249-3 | 3469 356 459 |
*---------------------------------------------------------------------------------*
If 4 in #, then (19 in r4c4) 1259 in r4c4789 and 12 (not in r5c1) in r789c1: one of them missing in # -> 3r78c5
If 4 not in #, but 1239 => (hidden pair) 12r59c1 -> 1259 in r4c1789 and 3r78c5, 4r4c4
=> -1359r4c5, -19r4c6, -5r5c1, -4r6c4, -3r9c6; stte
[Edit:] Cenoman pointed out, that these elimantions are not enough for ste or bte, thanks.
However this can be repaired:
In the first case 12 are in r789c1, and not both can be in r78c1 (leaving only 3 digits in #), so we get 12r9c1
In the second case we have the hidden pair 12r59c1.
So also 3456r9c1 can be eliminated.
So we have
- 4r78c4, 1259 r4c4789, 3r78c5, 12r9c1 or
- 12r59c1, 1259 r4c1789, 4r4c4, 3r78c5