shye wrote:unorthodox quadruple
Great solution !
Here is a complex alternative:
Note the ALS's 12349 in r78c45 (#) and 1259 in r4c789 (@).
- Code: Select all
-  *---------------------------------------------------------------------------------*
 |  467      4689     2        |  3      1689    1789    |  5       78     14      |
 |  3567     1        3578     |  267    4       278     |  23      9      78      |
 |  347      3489     34789    |  5      189     12789   |  14      23     6       |
 |-----------------------------+-------------------------+-------------------------|
 | B1234-5   7        6        | A149    8-1359  348-19  | @129    @25    @159     |
 |  8        35       135      |  1679   2       1379    |  1679    4      1579    |
 |  9        245      145      |  167-4  156     147     |  8       2567   3       |
 |-----------------------------+-------------------------+-------------------------|
 | x13467    34689    134789   | #149   #139     5       |  34679   3678   2       |
 | y23457    234589   345789   | #249   #39      6       |  3479    1      45789   |
 | *123456   234569   13459    |  8      7       1249-3  |  3469    356    459     |
 *---------------------------------------------------------------------------------*
 If 4 in #, then (19 in r4c4) 1259 in r4c4789 and 12 (not in r5c1) in r789c1: one of them missing in # -> 3r78c5
 If 4 not in #, but 1239 => (hidden pair) 12r59c1 -> 1259 in r4c1789 and 3r78c5, 4r4c4
 => -1359r4c5, -19r4c6, -5r5c1, -4r6c4, -3r9c6; stte
[Edit:] Cenoman pointed out, that these elimantions are not enough for ste or bte, thanks.
However this can be repaired:
In the first case 12 are in r789c1, and not both can be in r78c1 (leaving only 3 digits in #), so we get 12r9c1
In the second case we have the hidden pair 12r59c1.
So also 3456r9c1 can be eliminated.
So we have
- 4r78c4, 1259 r4c4789, 3r78c5, 12r9c1 or
- 12r59c1, 1259 r4c1789, 4r4c4, 3r78c5