min(N) <= (N^2+1)*N*(N-1)/2 , N>=2
For n= 2, 3, 4...15 this gives 5, 30, 102, 260, 555, 1050, 1820, 2952, 4545, 6710, 9570, 13260, 17927, 23730
I noticed that this sequence is also in the OEIS https://oeis.org/A071252
- Code: Select all
+-------+-------+-------+
| . . . | . . . | . . . |
| . . . | . . . | 1 2 3 |
| . . . | 1 2 3 | 4 5 6 |
+-------+-------+-------+
| . . . | . . . | . . . |
| . . . | . . . | 2 3 4 |
| . . 1 | 2 3 4 | 5 6 7 |
+-------+-------+-------+
| . . . | . . . | . . . |
| . . . | . . . | 3 4 5 |
| . 1 2 | 3 4 5 | 6 7 8 |
+-------+-------+-------+
+-------------+-------------+-------------+-------------+
| . . . . | . . . . | . . . . | . . . . |
| . . . . | . . . . | . . . . | 1 2 3 4 |
| . . . . | . . . . | 1 2 3 4 | 5 6 7 8 |
| . . . . | 1 2 3 4 | 5 6 7 8 | 9 10 11 12 |
+-------------+-------------+-------------+-------------+
| . . . . | . . . . | . . . . | . . . . |
| . . . . | . . . . | . . . . | 2 3 4 5 |
| . . . . | . . . . | 2 3 4 5 | 6 7 8 9 |
| . . . 1 | 2 3 4 5 | 6 7 8 9 | 10 11 12 13 |
+-------------+-------------+-------------+-------------+
| . . . . | . . . . | . . . . | . . . . |
| . . . . | . . . . | . . . . | 3 4 5 6 |
| . . . . | . . . . | 3 4 5 6 | 7 8 9 10 |
| . . 1 2 | 3 4 5 6 | 7 8 9 10 | 11 12 13 14 |
+-------------+-------------+-------------+-------------+
| . . . . | . . . . | . . . . | . . . . |
| . . . . | . . . . | . . . . | 4 5 6 7 |
| . . . . | . . . . | 4 5 6 7 | 8 9 10 11 |
| . 1 2 3 | 4 5 6 7 | 8 9 10 11 | 12 13 14 15 |
+-------------+-------------+-------------+-------------+
+----------------+----------------+----------------+----------------+----------------+
| . . . . . | . . . . . | . . . . . | . . . . . | . . . . . |
| . . . . . | . . . . . | . . . . . | . . . . . | 1 2 3 4 5 |
| . . . . . | . . . . . | . . . . . | 1 2 3 4 5 | 6 7 8 9 10 |
| . . . . . | . . . . . | 1 2 3 4 5 | 6 7 8 9 10 | 11 12 13 14 15 |
| . . . . . | 1 2 3 4 5 | 6 7 8 9 10 | 11 12 13 14 15 | 16 17 18 19 20 |
+----------------+----------------+----------------+----------------+----------------+
| . . . . . | . . . . . | . . . . . | . . . . . | . . . . . |
| . . . . . | . . . . . | . . . . . | . . . . . | 2 3 4 5 6 |
| . . . . . | . . . . . | . . . . . | 2 3 4 5 6 | 7 8 9 10 11 |
| . . . . . | . . . . . | 2 3 4 5 6 | 7 8 9 10 11 | 12 13 14 15 16 |
| . . . . 1 | 2 3 4 5 6 | 7 8 9 10 11 | 12 13 14 15 16 | 17 18 19 20 21 |
+----------------+----------------+----------------+----------------+----------------+
| . . . . . | . . . . . | . . . . . | . . . . . | . . . . . |
| . . . . . | . . . . . | . . . . . | . . . . . | 3 4 5 6 7 |
| . . . . . | . . . . . | . . . . . | 3 4 5 6 7 | 8 9 10 11 12 |
| . . . . . | . . . . . | 3 4 5 6 7 | 8 9 10 11 12 | 13 14 15 16 17 |
| . . . 1 2 | 3 4 5 6 7 | 8 9 10 11 12 | 13 14 15 16 17 | 18 19 20 21 22 |
+----------------+----------------+----------------+----------------+----------------+
| . . . . . | . . . . . | . . . . . | . . . . . | . . . . . |
| . . . . . | . . . . . | . . . . . | . . . . . | 4 5 6 7 8 |
| . . . . . | . . . . . | . . . . . | 4 5 6 7 8 | 9 10 11 12 13 |
| . . . . . | . . . . . | 4 5 6 7 8 | 9 10 11 12 13 | 14 15 16 17 18 |
| . . 1 2 3 | 4 5 6 7 8 | 9 10 11 12 13 | 14 15 16 17 18 | 19 20 21 22 23 |
+----------------+----------------+----------------+----------------+----------------+
| . . . . . | . . . . . | . . . . . | . . . . . | . . . . . |
| . . . . . | . . . . . | . . . . . | . . . . . | 5 6 7 8 9 |
| . . . . . | . . . . . | . . . . . | 5 6 7 8 9 | 10 11 12 13 14 |
| . . . . . | . . . . . | 5 6 7 8 9 | 10 11 12 13 14 | 15 16 17 18 19 |
| . 1 2 3 4 | 5 6 7 8 9 | 10 11 12 13 14 | 15 16 17 18 19 | 20 21 22 23 24 |
+----------------+----------------+----------------+----------------+----------------+
These examples above are all solvable by singles only (and they are also minimal). The number of givens for the last case N=5 is
1+2+3+4 (first stack) +5*(1*5) (second stack) +...5*(4*5) (last stack), which is
1+2+3+4 +5^2(1+2+3+4) = (5^2+1)(1+2+3+4) = (5^2+1)*5*4/2
Generalization for arbitrary N gives the formula.
The upper bound is not very sharp for small N but I think that it is quite difficult to generate a random sudoku for N>6 which has less clues. The 144x144 sudokus in this thread have for example more than 12000 givens while min(12)<=9570.