Hi YZF,
Have you implemented ALS-nodes in your solver? I've been waiting for a long time.
Hi Cenoman,
Did you use YZF's hint (frankly)?
I have taken this example from Denis Berthier's book 'Pattern-Based Constraint Satisfaction and Logic Puzzles (Second Edition)', and Denis says on page 264, "This puzzle has moderate complexity (though it is on the high side of the fuzzy boundary of puzzles solvable by humans)..." As usual, Denis had solved it with whips, and I tried to find an alternative human solution. It is easy to see many almost locked sets in the resolution state after the basic steps, so it is natural to try ALS-based methods. This is my solution.
- Code: Select all
.-------------------------.-----------------------.----------------------.
| 7 126 8 | 459 4569 4569 | 3 1456 1259 |
| c469 c36 c3469 | 2 c34569 1 | c4679 45678 5789 |
| 5 1236 123469 | 78 3469 78 | 12469 146 129 |
:-------------------------+-----------------------+----------------------:
| 19 4 1579 | 3579 b59 3579 | 8 2 6 |
| 3 26-7 269-7 | a479 8 2469-7 | ae147 ae1457 ae157 |
| 268 25678 2567 | 1 2456 24567 | d47 9 3 |
:-------------------------+-----------------------+----------------------:
| 128 9 12357 | 6 125 2358 | 127 1378 4 |
| 12468 12368 12346 | 3489 7 23489 | 5 1368 1289 |
| 12468 1235678 1234567 | 34589 12459 234589 | 12679 13678 12789 |
'-------------------------'-----------------------'----------------------'
1. AIC with a group and ALS's
(7=9)r5c4789 - (9=5)r4c5 - (5=7)r2c12357 - r6c7 = r5c789 => -7 r5c236; naked quad in c2 => 8r8c2, 8r6c1; lc
- Code: Select all
.--------------------.-----------------------.-----------------------.
| 7 126 8 | 459 469-5 4569 | 3 1456 1259 |
| a469 a36 a469 | 2 a34569 1 | a4679 578-46 578-9 |
| 5 1236 2469 | 78 3469 78 | 12469 146 129 |
:--------------------+-----------------------+-----------------------:
| 19 4 1579 | 3579 9-5 3579 | 8 2 6 |
| 3 26 2679 | 479 8 24679 | 14-7 1457 157 |
| 8 57 2567 | 1 246-5 24567 | 4-7 9 3 |
:--------------------+-----------------------+-----------------------:
| b12 9 357-1 | 6 b125 358-2 | b127 378-1 4 |
| 1246 8 1346 | 349 7 2349 | 5 136 129 |
| 1246 57 134567 | 34589 1249-5 234589 | 1269-7 13678 12789 |
'--------------------'-----------------------'-----------------------'
2. Doubly Linked ALS-XZ (note that the first ALS is the same as in step 1)
(5=7)r2c12357 - (7=5)r7c157 - (5=7)r2c12357 => -5 r1469c5, -7 r569c7, -46 r2c8, -9 r2c9, -1 r7c38, -2 r7c6; singles and lc
- Code: Select all
.-------------.--------------.--------------.
| 7 12 8 | 9 46 46 | 3 15 125 |
| 9 3 4 | 2 5 1 | 6 78 78 |
| 5 126 26 | 78 3 78 | 29 4 129 |
:-------------+--------------+--------------:
| 1 4 7-5 | 57 9 3 | 8 2 6 |
| 3 26 9 | 4 8 26 | 1 57 57 |
| 8 *57 26 | 1 26 *57 | 4 9 3 |
:-------------+--------------+--------------:
| 2 9 *35 | 6 1 *58 | 7 38 4 |
| 4 8 1 | 3 7 29 | 5 6 29 |
| 6 7-5 357 | 58 24 249 | 29 138 18 |
'-------------'--------------'--------------'
3. There are many ways to continue, and this one seems the simplest:
Skyscraper (5) r67 => -5 r4c3, r9c2; ste
And again, this puzzle proves to be of ALSC-class, but without the appendix 'long', as it is solvable in three steps. I think that its complexity is comparable to
this one. I was greatly surprised that Andrew Stuart's Solver was unable to solve this puzzle, and I got the message, "Run out of known strategies."
P.S. Denis, thanks for the puzzle.