Hi YZF,
Have you implemented ALS-nodes in your solver? I've been waiting for a long time.
Hi Cenoman,
Did you use YZF's hint (frankly)?
I have taken this example from Denis Berthier's book 'Pattern-Based Constraint Satisfaction and Logic Puzzles (Second Edition)', and Denis says on page 264, "This puzzle has moderate complexity (though it is on the high side of the fuzzy boundary of puzzles solvable by humans)..." As usual, Denis had solved it with whips, and I tried to find an alternative human solution. It is easy to see many almost locked sets in the resolution state after the basic steps, so it is natural to try ALS-based methods. This is my solution.
- Code: Select all
- .-------------------------.-----------------------.----------------------.
 | 7      126      8       | 459    4569    4569   | 3      1456    1259  |
 | c469   c36      c3469   | 2      c34569  1      | c4679  45678   5789  |
 | 5      1236     123469  | 78     3469    78     | 12469  146     129   |
 :-------------------------+-----------------------+----------------------:
 | 19     4        1579    | 3579   b59     3579   | 8      2       6     |
 | 3      26-7     269-7   | a479   8       2469-7 | ae147  ae1457  ae157 |
 | 268    25678    2567    | 1      2456    24567  | d47    9       3     |
 :-------------------------+-----------------------+----------------------:
 | 128    9        12357   | 6      125     2358   | 127    1378    4     |
 | 12468  12368    12346   | 3489   7       23489  | 5      1368    1289  |
 | 12468  1235678  1234567 | 34589  12459   234589 | 12679  13678   12789 |
 '-------------------------'-----------------------'----------------------'
 
 1. AIC with a group and ALS's 
(7=9)r5c4789 - (9=5)r4c5 - (5=7)r2c12357 - r6c7 = r5c789 => -7 r5c236; naked quad in c2 => 8r8c2, 8r6c1; lc
- Code: Select all
- .--------------------.-----------------------.-----------------------.
 | 7     126   8      | 459    469-5   4569   | 3       1456    1259  |
 | a469  a36   a469   | 2      a34569  1      | a4679   578-46  578-9 |
 | 5     1236  2469   | 78     3469    78     | 12469   146     129   |
 :--------------------+-----------------------+-----------------------:
 | 19    4     1579   | 3579   9-5     3579   | 8       2       6     |
 | 3     26    2679   | 479    8       24679  | 14-7    1457    157   |
 | 8     57    2567   | 1      246-5   24567  | 4-7     9       3     |
 :--------------------+-----------------------+-----------------------:
 | b12   9     357-1  | 6      b125    358-2  | b127    378-1   4     |
 | 1246  8     1346   | 349    7       2349   | 5       136     129   |
 | 1246  57    134567 | 34589  1249-5  234589 | 1269-7  13678   12789 |
 '--------------------'-----------------------'-----------------------'
 
2. Doubly Linked ALS-XZ (note that the first ALS is the same as in step 1)
(5=7)r2c12357 - (7=5)r7c157 - (5=7)r2c12357 => -5 r1469c5, -7 r569c7, -46 r2c8, -9 r2c9, -1 r7c38, -2 r7c6; singles and lc
- Code: Select all
- .-------------.--------------.--------------.
 | 7  12   8   | 9   46  46   | 3   15   125 |
 | 9  3    4   | 2   5   1    | 6   78   78  |
 | 5  126  26  | 78  3   78   | 29  4    129 |
 :-------------+--------------+--------------:
 | 1  4    7-5 | 57  9   3    | 8   2    6   |
 | 3  26   9   | 4   8   26   | 1   57   57  |
 | 8  *57  26  | 1   26  *57  | 4   9    3   |
 :-------------+--------------+--------------:
 | 2  9    *35 | 6   1   *58  | 7   38   4   |
 | 4  8    1   | 3   7   29   | 5   6    29  |
 | 6  7-5  357 | 58  24  249  | 29  138  18  |
 '-------------'--------------'--------------'
 
3. There are many ways to continue, and this one seems the simplest:
Skyscraper (5) r67 => -5 r4c3, r9c2; ste
And again, this puzzle proves to be of ALSC-class, but without the appendix 'long', as it is solvable in three steps. I think that its complexity is comparable to 
this one. I was greatly surprised that Andrew Stuart's Solver was unable to solve this puzzle, and I got the message, "Run out of known strategies."
P.S. Denis, thanks for the puzzle.