Nice work, Mauricio !
The first minimal puzzle with 32 clues has been posted by dukuso in september 2005. See here.
AFAIK, your puzzle is the first minimal fully symmetric 32 clues.
What about 33 clues ?
JPF
#32 clues, FS abs. minimal
+-------+-------+-------+
| . . 1 | . 2 . | 3 . . |
| . 2 . | . . . | . 4 . |
| 5 . 3 | 1 . 6 | 2 . 7 |
+-------+-------+-------+
| . . 4 | 6 . 2 | 8 . . |
| 8 . . | . . . | . . 3 |
| . . 7 | 8 . 3 | 4 . . |
+-------+-------+-------+
| 1 . 2 | 7 . 8 | 5 . 4 |
| . 7 . | . . . | . 1 . |
| . . 5 | . 6 . | 7 . . |
+-------+-------+-------+
#32 clues, FS abs. minimal
+-------+-------+-------+
| . . . | . . . | . . . |
| . 1 2 | . 3 . | 4 5 . |
| . 3 6 | 1 . 5 | 7 2 . |
+-------+-------+-------+
| . . 4 | . 8 . | 3 . . |
| . 6 . | 4 . 2 | . 1 . |
| . . 8 | . 1 . | 6 . . |
+-------+-------+-------+
| . 8 5 | 3 . 4 | 1 6 . |
| . 4 1 | . 5 . | 2 8 . |
| . . . | . . . | . . . |
+-------+-------+-------+
Eioru wrote:Are there puzzles with fully symmetric satisfing the article I list below?
(1) empty box ( more than 1 )
(2) empty rows or lines ( more than 6 )
(3) empty two diagonals, verticle axis, and horizontal axis (24 or 32 clues)
(4) the least clue ( less than 24 )
+-------+-------+-------+
| . . . | . . . | . . . |
| . . 1 | 2 3 4 | 5 . . |
| . 2 4 | . 6 . | 3 1 . |
+-------+-------+-------+
| . 1 . | . 5 . | . 6 . |
| . 6 3 | 1 . 7 | 8 5 . |
| . 5 . | . 2 . | . 3 . |
+-------+-------+-------+
| . 8 5 | . 7 . | 6 2 . |
| . . 2 | 3 8 6 | 1 . . |
| . . . | . . . | . . . |
+-------+-------+-------+ ER 9.0
+-------+-------+-------+
| . . . | . . . | . . . |
| . . 1 | 2 . 3 | 4 . . |
| . 2 3 | 4 . 5 | 1 6 . |
+-------+-------+-------+
| . 3 2 | . . . | 5 7 . |
| . . . | . . . | . . . |
| . 5 6 | . . . | 8 4 . |
+-------+-------+-------+
| . 1 5 | 3 . 4 | 6 8 . |
| . . 4 | 1 . 7 | 2 . . |
| . . . | . . . | . . . |
+-------+-------+-------+
+-------+-------+-------+
| . 1 2 | . . . | 3 4 . |
| 3 . 5 | . . . | 2 . 6 |
| 4 6 . | . . . | . 5 1 |
+-------+-------+-------+
| . . . | 2 4 7 | . . . |
| . . . | 8 . 1 | . . . |
| . . . | 5 6 9 | . . . |
+-------+-------+-------+
| 6 2 . | . . . | . 8 5 |
| 5 . 3 | . . . | 4 . 7 |
| . 4 1 | . . . | 6 3 . |
+-------+-------+-------+
RW wrote:Are there any known minimal fully symmetrical puzzles with >32 clues yet? Guess there could be some lurking in the vast amount of 36s generated lately...
JPF wrote:What about 33 clues ?
#33 clues, abs. minimal, fully symmetrical, ER 9.0
+-------+-------+-------+
| . . . | . 1 . | . . . |
| . . 1 | 2 . 3 | 4 . . |
| . 2 5 | 6 . 4 | 1 3 . |
+-------+-------+-------+
| . 5 7 | . . . | 3 1 . |
| 1 . . | . 5 . | . . 4 |
| . 6 4 | . . . | 7 5 . |
+-------+-------+-------+
| . 7 6 | 1 . 5 | 8 4 . |
| . . 2 | 8 . 6 | 5 . . |
| . . . | . 4 . | . . . |
+-------+-------+-------+
*-----------*
|..3|..6|78.|
|..6|78.|12.|
|78.|12.|45.|
|---+---+---|
|.31|.64|8..|
|.64|8..|2..|
|8..|2..|5..|
|---+---+---|
|312|645|...|
|645|...|...|
|...|...|...|
*-----------*
coloin wrote:Therefore.......have you tried ?
Starting from Havards set of 38s
Scramble the rows and boxrows a few hundred times
Get the puzzle which has the most clues coinciding with your puzzle template.
If you can get 31-32 clues to line up.......you might have a chance
to go on to make a puzzle approaching the 36 clue template.
You might have to go in stages,32,33,34,35........
#34 clues, minimal, horizontal + vertical symmetry, ER 9.2
+-------+-------+-------+
| . . . | . 1 . | . . . |
| . . 1 | 2 . 3 | 4 . . |
| . 2 3 | 5 . 6 | 1 7 . |
+-------+-------+-------+
| . 3 8 | . 2 . | 5 1 . |
| . . . | 8 . 5 | . . . |
| . 4 5 | . 3 . | 8 2 . |
+-------+-------+-------+
| . 6 4 | 3 . 2 | 7 8 . |
| . . 2 | 1 . 7 | 6 . . |
| . . . | . 6 . | . . . |
+-------+-------+-------+
coloin wrote:I think it is difficult to go straight to the template......perhaps make a 35 with 32/36 of the clues from the template and move sideways to the template from that.
+-------+-------+-------+
| . . . | . x . | . . . |
| . . x | x . x | x . . |
| . x x | x . x | x x . |
+-------+-------+-------+
| . x x | . x . | x x . |
| x . . | x . x | . . x |
| . x x | . x . | x x . |
+-------+-------+-------+
| . x x | x . x | x x . |
| . . x | x . x | x . . |
| . . . | . x . | . . . |
+-------+-------+-------+
000010000001203400052604170007030540500002006036040782063401857005308600000000000
000010000001203400052604170007030540500002006063040782036401857005308600000000000
000000000102304500043506210017050840000807000058041720036108470001405600000060000
001020000002304100030105260074000580300508007085040630017403826003602700000000000
001020000002304100035106270084000650300605008056040730010403527003702800000000000
000000000102304500043506210017050840000708000058041720036107480001405600000060000
001020000002304100030501260074000580300805007085040630017403826003206700000000000
001020000002304100035601270084000650300506008056040730010403527003207800000000000
000000000102304500043506210017030840000708000038041720056107480001403600000060000
000000000102304500043506210017050480000708000058041720036107840001405600000060000
000000000001203450032405160067040380000708000048036710025607830006304500000050000
000000000102304500034506210017040830000708000048031720056107380001403600000060000
000000000102304500043506210017030480000708000038041720056107840001403600000060000
000000000001203450032405160067020380000708000028036710045607830006302500000050000
000000000102304500034506210017040380000708000048031720056107830001403600000060000
000000000001203450023405160067030280000708000038026710045607820006302500000050000
000000000102304500043506210017030480000708000038041720056103870001407600000060000
001000000002304150003105264067030480000708000038046720015607840006403500000050000
001000000002304150004105263067040380000708000048036720015607830006403500000050000
005010000002304560003506214017030480000708000038040720056107840001403600000060000
005010000002304560004506213017040380000708000048030720056107830001403600000060000
Mauricio wrote:If you are just looking for isomorphs of fully-symmetrical puzzles,
it can be done very fast:First compile a list of all possible fully-symmetrical patterns (there are relatively few patterns),
and then check if your puzzle is isomorphic (patternwise) to one of that list.
+-------+-------+-------+
| . . . | . 1 . | . . . |
| . . 1 | 2 3 4 | 5 . . |
| . 2 6 | 5 . 7 | 4 1 . |
+-------+-------+-------+
| . 3 4 | . . . | 6 2 . |
| 2 1 . | . . . | . 5 4 |
| . 6 8 | . . . | 1 3 . |
+-------+-------+-------+
| . 8 2 | 7 . . | 3 4 . |
| . . 3 | 1 2 8 | 7 . . |
| . . . | . 4 . | . . . |
+-------+-------+-------+