Exotic patterns a resume

Advanced methods and approaches for solving Sudoku puzzles

Re: Exotic patterns a resume

Postby daj95376 » Thu Jul 11, 2013 9:45 am

champagne wrote:I am also interested in getting the rows/columns/boxes equivalence to the cells solution

I'm not sure if the "exotic" thread is now exclusively dedicated to MSLS solutions, but I believe there is an old-fashioned Multi-Fish present.

Code: Select all
Puzzle #1:

9..8..7...8..9..6...5..4...8..3..2...2.....7...4..5..81..2...3..3..8.9....7..3..1
;cells truths/covers ;16;95;10;10;

   c2b7  Locked Candidate 1              <> 9    r46c2

 +-----------------------------------------------------------------------+
 |  9      146    1236   |  8      1356   126    |  7      1245   2345   |
 |  2347   8      123    |  157    9      127    |  1345   6      2345   |
 |  2367   167    5      |  167    1367   4      |  138    1289   239    |
 |-----------------------+-----------------------+-----------------------|
 |  8      1567   169    |  3      1467   1679   |  2      1459   4569   |
 |  356    2      1369   |  1469   146    8      |  13456  7      34569  |
 |  367    167    4      |  1679   2      5      |  136    19     8      |
 |-----------------------+-----------------------+-----------------------|
 |  1      4569   8      |  2      4567   679    |  456    3      4567   |
 |  2456   3      26     |  14567  8      167    |  9      245    24567  |
 |  2456   4569   7      |  4569   456    3      |  4568   2458   1      |
 +-----------------------------------------------------------------------+
 # 139 eliminations remain

 Templates: 48 9 11 20 12 140 15 2 5


 <289>        accepted = 16 template combinations

 <289>   <>2  r28c1

 <289>   <>1  r3c8
 <289>   <>3  r3c9
 <289>   <>4  r9c8
 <289>   <>5  r9c8

 <289>        r3c89,r9c8   locked for candidates

Multi-Fish row/column equivalence: created manually, may be incorrect

Code: Select all
(5) Truths = ( 28R39 9R3 )
(5) Links  = ( 2c1 8c7 3n89 9n8 )


Let me know if this is inappropriate and I will withdraw it !
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: Exotic patterns a resume

Postby champagne » Thu Jul 11, 2013 10:04 am

Hi Danny,

daj95376 wrote:I'm not sure if the "exotic" thread is now exclusively dedicated to MSLS solutions, but I believe there is an old-fashioned Multi-Fish present.


even if the stress came on the MSLS topic these days, the thread remains open to any exotic pattern and to all search methods, looking for the best efficiency.


daj95376 wrote:Multi-Fish row/column equivalence: created manually, may be incorrect

Code: Select all
(5) Truths = ( 28R39 9R3 )
(5) Links  = ( 2c1 8c7 3n89 9n8 )



I expected such simple equivalences in the low ratings. Eliminations are the same as for my 16 MSLS solutions.
This is a kind of solution my solver should find with the appropriate search parameters

thanks
champagne
2017 Supporter
 
Posts: 7465
Joined: 02 August 2007
Location: France Brittany

Re: Exotic patterns a resume

Postby champagne » Thu Jul 11, 2013 10:08 am

Hi leren,


It seems that our matching puzzles have the same split of digits, but generally not the same cells-base;.

here the results for other puzzles

for each puzzle, you have

the start PM
the rows columns matrix before addition of cells
the final rows columns boxes links
and the eliminations

Hidden Text: Show
Code: Select all
98.7.......6.5.9.........436...9.2...2...8.....51...3.1..2....4.6..1.8....2..5.1.;cells truths/covers ;18;97;97;17;

A    B    C     |D     E     F     |G     H    I     
9    8    134   |7     2346  12346 |156   256  1256 
2347 1347 6     |34    5     1234  |9     278  1278 
257  157  17    |689   268   1269  |167   4    3     
----------------------------------------------------
6    1347 13478 |345   9     347   |2     578  1578 
347  2    13479 |3456  3467  8     |14567 5679 15679
478  479  5     |1     2467  2467  |467   3    6789 
----------------------------------------------------
1    3579 3789  |2     3678  3679  |3567  5679 4     
3457 6    3479  |349   1     3479  |8     2579 2579 
3478 3479 2     |34689 34678 5     |367   1    679   


rows 1 2 3 4  columns 1 7 8 9  SLG rank 0
18 Truths = {1N789 2N12489 3N1237 4N234689 }
18 Links = {1r4 1b13 2c1 2b3 3r24 4r24 5r134 6b3 7r234 8r24 }
3 elims 1r1c3 3r2c6 4r2c6



98.7.......7.6.5.......4.738..........2.4...5.....124.7..1....2.2...96....3.2..5.;cells truths/covers ;19;96;88;17;

A    B       C     |D     E     F     |G     H     I     
9    8       145   |7     135   235   |14    126   146   
1234 134     7     |289   6     28    |5     1289  1489 
1256 156     156   |2589  1589  4     |189   7     3     
--------------------------------------------------------
8    1345679 14569 |23569 3579  23567 |1379  1369  1679 
136  13679   2     |3689  4     3678  |13789 13689 5     
356  35679   569   |35689 35789 1     |2     4     6789 
--------------------------------------------------------
7    4569    45689 |1     358   3568  |3489  389   2     
145  2       1458  |3458  3578  9     |6     138   1478 
146  1469    3     |468   2     678   |14789 5     14789

rows 1 2 3 9  columns 1 2 3 9  SLG rank 0
19 Truths = {1N3789 2N124689 3N123 9N124679 }
19 Links = {1r9 1b13 2r123 3b1 4r129 5b1 6r139 7r9 8r29 9r29 }
3 elims 1r3c7 2r1c6 2r3c4



98.7.....6.....5....7.6..8.4...9..7...83..6.......2..1.7..8..4...94..3.......1..2;cells truths/covers ;21;95;10;10;

A    B     C     |D    E     F    |G    H    I   
9    8     12345 |7    12345 345  |124  1236 346
6    1234  1234  |1289 1234  3489 |5    1239 7   
1235 12345 7     |125  6     3459 |1249 8    349
------------------------------------------------
4    12356 12356 |1568 9     568  |28   7    35 
1257 1259  8     |3    1457  457  |6    259  459
357  3569  356   |568  457   2    |489  359  1   
------------------------------------------------
1235 7     12356 |2569 8     3569 |19   4    569
125  1256  9     |4    257   567  |3    156  8   
8    3456  3456  |569  35    1    |7    569  2   



rows 2 5 6 9  columns 2 4 5 8  SLG rank 0
21 Truths = {2N23458 5N12568 6N123458 9N23458 }
21 Links = {1r25 2r25 3r269 4r29 4b5 5r569 6r69 7r56 8c4 9c248 }
5 elims 3r2c6 4r2c6 5r5c9 8r4c4 9r7c4


98.7.....6.....85...5.6...94...3...5..74..6.......2.1..5..7...3..43..5.......1.2.;cells truths/covers ;17;98;10;10;

A    B     C     |D    E    F    |G     H    I   
9    8     123   |7    1245 345  |1234  46   1246
6    12347 123   |129  1249 349  |8     5    1247
1237 12347 5     |128  6    348  |12347 47   9   
-------------------------------------------------
4    126   1268  |168  3    7    |29    89   5   
1258 129   7     |4    1589 589  |6     3    28   
358  369   3689  |5689 589  2    |47    1    47   
-------------------------------------------------
128  5     12689 |289  7    4689 |149   4689 3   
1278 1269  4     |3    289  689  |5     6789 1678
378  3679  3689  |589  4589 1    |479   2    4678

rows 1 2 3 5  columns 3 5 8 9  SLG rank 0
17 Truths = {1N356789 2N34569 3N8 5N12569 }
17 Links = {1r125 2r125 3r12 4b23 5r15 6b3 7b3 8r5 9r25 }
6 elims 1r2c2 2r2c2 3r2c2 4r3c6 4r3c7 7r3c7



98.7.....6...5.8....4..6.7.5....4.9...93..4......2...1.9...8.4...65..7......1...2;cells truths/covers ;23;95;66;66;

A     B     C     |D    E   F    |G     H     I   
9     8     1235  |7    34  123  |12356 12356 3456
6     1237  1237  |1249 5   1239 |8     123   349 
123   1235  4     |1289 389 6    |1235  7     359 
--------------------------------------------------
5     12367 12378 |168  678 4    |236   9     3678
1278  1267  9     |3    678 157  |4     2568  5678
3478  3467  378   |689  2   579  |356   3568  1   
--------------------------------------------------
1237  9     12357 |26   367 8    |1356  4     356 
12348 1234  6     |5    349 239  |7     138   38   
3478  3457  3578  |46   1   37   |9     3568  2 
 
rows 2 6 8 9  columns 1 2 4 6  SLG rank 0
23 Truths = {2N23468 6N1234678 8N12689 9N123468 }
23 Links = {1r28 2r28 3r2689 4c124 5r69 6r69 7r269 8r689 9c46 }
3 elims 3r2c9 3r8c5 9r3c4



98.7.....6...5.8....4..8.7.5....4.9...39..4......2...1.9...6.4...65..7......1...2;cells truths/covers ;15;95;10;10;

A     B    C    |D    E    F    |G     H    I   
9     8    125  |7    346  123  |12356 1235 3456
6     1237 127  |1234 5    1239 |8     123  349 
123   1235 4    |1236 369  8    |12356 7    3569
------------------------------------------------
5     1267 1278 |1368 3678 4    |236   9    3678
1278  1267 3    |9    678  157  |4     258  5678
478   467  9    |368  2    357  |356   358  1   
------------------------------------------------
12378 9    1278 |238  378  6    |135   4    358 
12348 1234 6    |5    3489 239  |7     138  38   
3478  3457 578  |348  1    37   |9     6    2   

rows 2 8 9  columns 1 2 4 6  SLG rank 0
15 Truths = {2N23468 8N12689 9N12346 }
15 Links = {1r28 2r28 3r289 4c4 4b7 5r9 7r29 8r89 9c6 }
3 elims 3r2c9 3r8c5 8r8c5



98.7.....6...9.7....7..5.9.7....4....6..3...2..86..5...2..5..1...69..8.......1..3;cells truths/covers ;13;99;99;66;

A    B     C     |D     E     F    |G     H     I   
9    8     12345 |7     1246  236  |12346 23456 1456
6    1345  12345 |12348 9     238  |7     23458 1458
1234 134   7     |12348 12468 5    |12346 9     1468
----------------------------------------------------
7    1359  12359 |1258  128   4    |1369  368   1689
145  6     1459  |158   3     789  |149   478   2   
1234 1349  8     |6     127   279  |5     347   149 
----------------------------------------------------
348  2     349   |348   5     3678 |469   1     4679
1345 13457 6     |9     247   237  |8     245   457 
458  4579  459   |248   24678 1    |2469  2456  3   

rows 5 7 9  columns 1 3 4 7  SLG rank 0
13 Truths = {5N1347 7N1347 9N13478 }
13 Links = {1r5 2r9 3r7 4r579 5r59 6b9 8c14 9c37 }
13 elims 2r9c5 3r7c6 4r5c8 4r7c9 4r9c2 4r9c5 5r9c2 6r7c9 8r2c4 8r3c4 8r4c4 9r4c3 9r4c7

champagne
2017 Supporter
 
Posts: 7465
Joined: 02 August 2007
Location: France Brittany

Re: Exotic patterns a resume

Postby JC Van Hay » Thu Jul 11, 2013 11:32 am

champagne wrote:here a sample file of puzzles rating in the range 95_99
the entire file except the last one has a response using the r0 cells_base search and nothing using the RCX search.
The last one is reverse : no response with the cells-base search, but a RCX solution

may-be leren will have other results.

I am also interested in getting the rows/columns/boxes equivalence to the cells solution
Hope the following will help :
Hidden Text: Show
9..8..7...8..9..6...5..4...8..3..2...2.....7...4..5..81..2...3..3..8.9....7..3..1;cells truths/covers ;16;95;10;10;
Basics : 3 S, LC(9), FXW(2)(!!)
Code: Select all
+--------------------+-------------------+-------------------------+
| 9       146   1236 | 8      1356  126  | 7       145      2345   |
| 347-2   8     123  | 157    9     127  | 1345    6        2345   |
| 367(2)  167   5    | 167    1367  4    | 13(8)   -1(289)  -3(29) |
+--------------------+-------------------+-------------------------+
| 8       1567  169  | 3      1467  1679 | 2       1459     4569   |
| 356     2     1369 | 1469   146   8    | 13456   7        34569  |
| 367     167   4    | 1679   2     5    | 136     19       8      |
+--------------------+-------------------+-------------------------+
| 1       4569  8    | 2      4567  679  | 456     3        4567   |
| 456-2   3     26   | 14567  8     167  | 9       245      24567  |
| 456(2)  4569  7    | 4569   456   3    | 456(8)  -45(28)  1      |
+--------------------+-------------------+-------------------------+
All Rows Loop[5] : {289R3 28R9} - {2c1 8c7 39n8 3n9}
6 Eliminations --> r28c1<>2, r9c8<>45, r3c8<>1, r3c9<>3
Code: Select all
+----------------------+----------------------+----------------------+
| 9       146     1236 | 8       1356    126  | 7       145    2345  |
| 347-2   8       123  | 157     9       127  | 1345    6      2345  |
| (2367)  (167)   5    | (167)   (1367)  4    | (138)   289-1  29-3  |
+----------------------+----------------------+----------------------+
| 8       1567    169  | 3       1467    1679 | 2       1459   4569  |
| 356     2       1369 | 1469    146     8    | 13456   7      34569 |
| 367     167     4    | 1679    2       5    | 136     19     8     |
+----------------------+----------------------+----------------------+
| 1       4569    8    | 2       4567    679  | 456     3      4567  |
| 456-2   3       26   | 14567   8       167  | 9       245    24567 |
| (2456)  (4569)  7    | (4569)  (456)   3    | (4568)  28-45  1     |
+----------------------+----------------------+----------------------+
ALS-XZ Rule, Double Link [10] : {3N12457 9N12457} - {1367r3 4569r9 2c1 8c7}
6 Eliminations --> r28c1<>2, r9c8<>45, r3c8<>1, r3c9<>3

9..8..7...8..9..6...5..4...8..6..3...3..8..7...4..5..62..1...9..9..2.1....1.....7;cells truths/covers ;18;98;98;83;
Basics : -
Loop[5] : {8R9 9R69 89C9} - {9c4 9n6 3n9 8b9 9b6}
9 Eliminations --> r3c9<>123, r5c47<>9, r9c6<>36, r7c7<>8, r8c8<>8

9..8..7...8..9..6...5..4..38..4..6...7..2..8...3..8..51...4.2...6.9...1...7......;cells truths/covers ;17;97;10;10;
Basics : 2 S
All Rows Loop[6] : {6R79 8R7 9R679} - {9c27 7n3 79n9 6b8}
5 Eliminations --> r9c9<>48, r4c2<>9, r5c7<>9, r7c9<>7

9..8..7...8..9..6...5..4..38..9..2...9..2..7...4..5...2..7...1..1...2..7....3.8..;cells truths/covers ;16;95;10;10;
Basics : 4 S
All Rows Loop[4] : {8R68 9R68} - {8c5 9c8 8n3 6n9}
6 Eliminations --> r6c9<>16, r8c3<>36, r7c5<>8, r9c8<>9

9..8..7...8..9..6...5..4..98..7..3...2..8..1...4..5...1..3...7..7..1.2....3.....1;cells truths/covers ;18;96;96;89;
Basics :-
All Rows Loop[6] : {7R369 8R369} - {7c15 8c78 9n6 6n9}
9 Eliminations --> r9c6<>269, r25c1<>7, r6c9<>26, r7c7<>8, r8c8<>8

98.7.......6.5.9.........436...9.2...2...8.....51...3.1..2....4.6..1.8....2..5.1.;cells truths/covers ;18;97;97;17;
Basics : LC(5,8)
All Rows Loop[10] : {1278R2 126789R3} - {2n689 3n4567 127b1}
3 Eliminations --> r2c6<>34, r1c3<>1

Note :
Equivalent All Cells Loop[6] : Sue de Coq : {2N124 3N123} - {34r2 1257b1}
whose simplest representation is Loop[3] : {34R1 2N4} - {1n3 34b2}

98.7.......6.5.9.......6.4.6...3.2...3......1..2..7.5.5..1...2..6..2.5....3..5..4;cells truths/covers ;17;95;95;71;
Basics : -
All Rows Loop[4] : {2R15 5R15} - {2c6 5c3 5n4 1n9}
9 Eliminations --> r5c4<>4689, r34c3<>5, r1c9<>36, r2c6<>2

98.7.......6.5.9.......8.4.6...3.2...3......1..2..7.5.5..1...2..6..2.5....3..5..4;cells truths/covers ;17;95;95;71;
Idem

98.7.......6.9.7.......5.4.6...8.4....7..3..5...5...2.1..2....4.6..7.1....9..1.3.;cells truths/covers ;13;97;97;94;
Basics : -
Code: Select all
+------------------------+----------------------+------------------------+
| 9       8       12345  | 7      1234-6  (246) | 235-6  (156)   (1236)  |
| 2345    12345   6      | 134-8  9       (248) | 7      (158)   (1238)  |
| 237     1237    123    | 1368   1236    5     | 23689  4       689-123 |
+------------------------+----------------------+------------------------+
| 6       235-19  235-1  | (19)   8       (279) | 4      (179)   (1379)  |
| 248     1249    7      | 1469   1246    3     | 689    1689    5       |
| 348     1349    1348   | 5      146     679-4 | 3689   2       16789-3 |
+------------------------+----------------------+------------------------+
| 1       357     358    | 2      356     689   | 5689   6789-5  4       |
| 2345-8  6       2345-8 | 34-89  7       (489) | 1      (589)   (289)   |
| 24578   2457    9      | 468    456     1     | 2568   3       678-2   |
+------------------------+----------------------+------------------------+
All cells Loop[13] : {4N4 1248N6 1248N8 1248N9} - {6r1 8r2 179r4 89r8 2c69 3c9 4c6 5c8 1b3}
17 Eliminations --> r8c134<>8, r3c9<>123, r1c57<>6, r4c23<>1, r2c4<>8, r4c2<>9, r6c9<>3, r6c6<>4, r7c8<>5, r8c4<>9, r9c9<>2
Code: Select all
+------------------------+------------------------+-----------------------------+
| 9       8       12345  | 7      1234-6  24(6)   | 235-6  5(16)     23(16)     |
| 2345    12345   6      | 134-8  9       24(8)   | 7      5(18)     23(18)     |
| 237     1237    123    | 1368   1236    5       | 23689  4         -23(689-1) |
+------------------------+------------------------+-----------------------------+
| 6       235-19  235-1  | (19)   8       2(79)   | 4      (179)     3(179)     |
| 248     1249    7      | 1469   1246    3       | 689    (1689)    5          |
| 348     1349    1348   | 5      146     -4(679) | 3689   2         -3(16789)  |
+------------------------+------------------------+-----------------------------+
| 1       357     358    | 2      356     (689)   | 5689   -5(6789)  4          |
| 2345-8  6       2345-8 | 34-89  7       4(89)   | 1      5(89)     2(89)      |
| 24578   2457    9      | 468    456     1       | 2568   3         -2(678)    |
+------------------------+------------------------+-----------------------------+
All Columns + Cell(s) Loop[15] : {6789C6 16789C8 16789C9 4N4} - {6r1 8r2 179r4 89r8 67n6 57n8 369n9 1b3}
17 Eliminations --> r8c134<>8, r3c9<>123, r1c57<>6, r4c23<>1, r2c4<>8, r4c2<>9, r6c9<>3, r6c6<>4, r7c8<>5, r8c4<>9, r9c9<>2

98.7.......6.9.7.......5.8.6...4...3.7...24....46...9.1......25.6.1.......9.2.6..;cells truths/covers ;17;97;10;10;
Basics : 2S, FXW(2)
All Rows Loop[4] : {6R37 9R37} - {6c5 9c7 7n6 3n9}
9 Eliminations --> r7c6<>3478, r3c9<>124, r1c5<>6, r8c7<>9

98.7.......7.6.5.......4.738..........2.4...5.....124.7..1....2.2...96....3.2..5.;cells truths/covers ;19;96;88;17;
Basics : LC(3,6)
First Sue de Coq[6] : {2N46 3N2345} - {15r3 6b1 289b2} :=> 5 Eliminations --> r3c1<>156, r1c6<>2, r3c7<>1; 3 S : r1c9=6, r1c8=2=r3c1
Second Sue de Coq[5] : {1N7 2N4689} - {289r2 14b3} :=> 5 Eliminations --> r1c89<>1, r1c9<>4, r2c1<>2, r3c7<>1; 3 S : r1c9=6, r1c8=2=r3c1
First All Rows Loop[7] : {13489R2 89R3} - {2n1289 3n7 89b2} :=> 3 Eliminations --> r2c18<>2, r3c7<>1; 3 S : r1c9=6, r1c8=2=r3c1
Second All Rows Loop[7]: {1345R1 134R2} - {1n356 2n12 14b3} :=> 3 Eliminations --> r1c6<>2, r2c1<>2, r3c7<>1; 3 S : r1c9=6, r1c8=2=r3c1

98.7.....6.....5....7.6..8.4...9..7...83..6.......2..1.7..8..4...94..3.......1..2;cells truths/covers ;21;95;10;10;
Basics : 4 S; FXW(9)
All Rows Loop[8] : {4R56 8R26 9R2569} - {8c4 9c48 2n6 6n7 5n9 4b5 9b4}
5 Eliminations --> r2c6<>34, r4c4<>8, r5c9<>5, r7c4<>9

98.7.....6.....85...5.6...94...3...5..74..6.......2.1..5..7...3..43..5.......1.2.;cells truths/covers ;17;98;10;10;
Basics : 1 S, LC(6), HP(47), 1S, LC(9), FXW(7)
Sue de Coq[5] : {1N3 2N3 3N128} - {47r3 123b1} :=> 6 Eliminations --> r2c2<>123, r3c67<>4, r3c7<>7
Or
Loop[3] : {3N8 47B1} - {47r3 2n2} :=> 6 Eliminations --> r2c2<>123, r3c67<>4, r3c7<>7
Or
All Rows Loop[9] : {4R1 47R2 123478R3} - {2n2 3n12467 4b23 7b3}
6 Eliminations --> r2c2<>123, r3c67<>4, r3c7<>7

98.7.....6...5.8....4..6.7.5....4.9...93..4......2...1.9...8.4...65..7......1...2;cells truths/covers ;23;95;66;66;
Basics : FXW(9), 1 S
All Columns Loop[4] : {4C59 9C59} - {4r1 9r3 8n5 2n9}
3 Eliminations --> r2c9<>3, r3c4<>9, r8c5<>3

98.7.....6...5.8....4..8.7.5....4.9...39..4......2...1.9...6.4...65..7......1...2;cells truths/covers ;15;95;10;10;
Idem
Basics : 1 S, FXW(9), 2 S, LC(5)
All Columns Loop[4] : {4C59 9C59} - {4r1 9r3 8n5 2n9}
3 Eliminations --> r8c5<>38, r2c9<>3

98.7.....6...9.5....7..4...3....2.5...89..6......4...1.2...7.3...64..9......1...6;cells truths/covers ;16;95;10;10;
Basics : 2 S, HP(69)
All Rows Loop[5] : {6R347 9R34} - {6c45 9c9 4n2 3n8}
5 Eliminations --> r3c8<>128, r1c5<>6, r6c4<>6

98.7.....6...9.7....7..5.9.7....4....6..3...2..86..5...2..5..1...69..8.......1..3;cells truths/covers ;13;99;99;66;
Basics : SS(7)
Code: Select all
+----------------------+-----------------------+-----------------------+
| 9      8      12345  | 7       1246    236   | 12346   23456   1456  |
| 6      1345   12345  | 1234-8  9       238   | 7       23458   1458  |
| 1234   134    7      | 1234-8  12468   5     | 12346   9       1468  |
+----------------------+-----------------------+-----------------------+
| 7      1359   1235-9 | 125-8   128     4     | 136-9   368     1689  |
| (145)  6      (1459) | (158)   3       789   | (149)   78-4    2     |
| 1234   1349   8      | 6       127     279   | 5       347     149   |
+----------------------+-----------------------+-----------------------+
| (348)  2      (349)  | (348)   5       678-3 | (469)   1       79-46 |
| 1345   13457  6      | 9       247     237   | 8       245     457   |
| (458)  79-45  (459)  | (248)   678-24  1     | (2469)  (2456)  3     |
+----------------------+-----------------------+-----------------------+
All Cells Loop[13] : {5N1347 7N1347 9N13478} - {1r5 2r9 3r7 4r579 5r59 8c14 9c37 6b9}
13 Eliminations --> r234c4<>8, r4c37<>9, r9c25<>4, r7c9<>46, r5c8<>4, r7c6<>3, r9c5<>2, r9c2<>5
Code: Select all
+------------------------+---------------------------+--------------------------+
| 9      8        12345  | 7       1246      236     | 12346   23456   1456     |
| 6      1345     12345  | 1234-8  9         238     | 7       23458   1458     |
| 1234   134      7      | 1234-8  12468     5       | 12346   9       1468     |
+------------------------+---------------------------+--------------------------+
| 7      1359     1235-9 | 125-8   128       4       | 136-9   368     1689     |
| 145    6        145(9) | 15(8)   3         (789)   | 14(9)   -4(78)  2        |
| 1234   1349     8      | 6       127       279     | 5       347     149      |
+------------------------+---------------------------+--------------------------+
| 34(8)  2        34(9)  | 34(8)   5         -3(678) | 4(69)   1       -4(79-6) |
| 1345   13457    6      | 9       247       237     | 8       245     457      |
| 45(8)  -45(79)  45(9)  | 24(8)   -24(678)  1       | 24(69)  245(6)  3        |
+------------------------+---------------------------+--------------------------+
All Rows Loop[11] : {789R5 6789R7 6789R9} - {8c14 9c37 9n2 9n5 57n6 5n8 7n9 6b9}
13 Eliminations --> r234c4<>8, r4c37<>9, r9c25<>4, r7c9<>46, r5c8<>4, r7c6<>3, r9c5<>2, r9c2<>5

98.7.....6..5.......4.3.8..2....31...9.1...2...1.2...8.6......4..3.4..8......53.1;cells truths/covers ;21;95;10;10;
Basics : 2 S, LC(1,4)
All Rows Loop[7] : {1R12 3R15 4R125} - {3c9 4c7 5n1 12n8 14b2}
8 Eliminations --> r5c1<>578, r1c8<>56, r2c8<>79, r6c7<>4

98.7.....6..5..4....3.6..8.3...9..6..9....5....24....1.3..8..2......9..8.....73.6;cells truths/covers ;15;96;10;10;
Basics : 3 S
All Rows Loop[5] : {8R69 9R69} - {8c1 9c8 9n3 6n7}
6 Eliminations --> r9c3<>145, r2c8<>9, r5c1<>8, r6c7<>7

98.7.....6...5.8....5..4.9.3....5.8...79..5......2...1.1...6.3...95..6..........2;2;3;97;10;10;floors; 589;ntruths; 6;
Basics : 1 S
Code: Select all
+----------------------+----------------------+--------------------------+
| 9      8        1234 | 7      136     123   | 1234   1246(5)  346(5)   |
| 6      2347     1234 | 123    5       9     | 8      1247     347      |
| 127    237      5    | 12368  1368    4     | 1237   9        367      |
+----------------------+----------------------+--------------------------+
| 3      246(9)   1246 | 146    1467    5     | 247-9  8        467(9)   |
| 1248   246      7    | 9      13468   138   | 5      246      346      |
| 458    -46(59)  468  | 3468   2       378   | 3479   467      1        |
+----------------------+----------------------+--------------------------+
| 24578  1        248  | 248    4789    6     | 479    3        -478(59) |
| 2478   2347     9    | 5      13478   12378 | 6      147      478      |
| 478-5  3467(5)  3468 | 1348   134789  1378  | 1479   147(5)   2        |
+----------------------+----------------------+--------------------------+
All Columns Loop[5] : {5C289 9C29} - {5r9 9r4 6n2 7n9 5b3}
7 Eliminations --> r7c9<>478, r6c2<>46, r4c7<>9, r9c1<>5
Code: Select all
+----------------------+----------------------+------------------------+
| 9      8        1234 | 7      136     123   | 1234   (12456)  (3456) |
| 6      (2347)   1234 | 123    5       9     | 8      (1247)   (347)  |
| 127    (237)    5    | 12368  1368    4     | 1237   9        (367)  |
+----------------------+----------------------+------------------------+
| 3      (2469)   1246 | 146    1467    5     | 247-9  8        (4679) |
| 1248   (246)    7    | 9      13468   138   | 5      (246)    (346)  |
| 458    59-46    468  | 3468   2       378   | 3479   (467)    1      |
+----------------------+----------------------+------------------------+
| 24578  1        248  | 248    4789    6     | 479    3        589-47 |
| 2478   (2347)   9    | 5      13478   12378 | 6      (147)    8-47   |
| 478-5  (34567)  3468 | 1348   134789  1378  | 1479   (1457)   2      |
+----------------------+----------------------+------------------------+
All Cells Loop[17] : {234589N2 125689N8 12345N9} - {5r9 9r4 23467c2 1247c8 347c9 5b3 6b36}
8 Eliminations --> r78c9<>4, r78c9<>7, r6c2<>46, r4c7<>9, r9c1<>5
In both cases :=> r8c9=8!
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: Exotic patterns a resume

Postby Leren » Thu Jul 11, 2013 12:42 pm

Hi Champagne,

I've resolved the following 4 additional puzzles:

Hidden Text: Show
98.7.....6.....5....7.6..8.4...9..7...83..6.......2..1.7..8..4...94..3.......1..2;cells truths/covers ;21;95;10;10; *MSLS 1 : Base 89; c2458 r2569 + r2c3 r5c1 r5c6 r6c1 r6c3 r9c3 : 21 Links; 9c2 89c4 9c8 ; 1234r2 1257r5 3567r6 356r9 ; 4b5 4b7 ;
98.7.....6...5.8....4..6.7.5....4.9...93..4......2...1.9...8.4...65..7......1...2;cells truths/covers ;23;95;66;66; *MSLS 1 : Base 49; r1347 c359 + r2c3 r6c3 r9c3 r5c5 r5c9 r8c9 : 17 Links; 4r1 9r3 ; 123578c3 3678c5 35678c9 ;
98.7.....6...5.8....4..8.7.5....4.9...39..4......2...1.9...6.4...65..7......1...2;cells truths/covers ;15;95;10;10; *MSLS 1 : Base 49; r1347 c359 + r2c3 r9c3 r5c5 r5c9 r8c9 : 16 Links; 4r1 9r3 ; 12578c3 3678c5 35678c9 ;
98.7.....6...9.7....7..5.9.7....4....6..3...2..86..5...2..5..1...69..8.......1..3;cells truths/covers ;13;99;99;66; *MSLS 1 : Base 89; c1347 r579 + r9c8 : 13 Links; 8c1 9c3 8c4 9c7 ; 145r5 34r7 245r9 ; 6b9 ;

The solution was that you had apparently included Skyscrapers, Kites and Empty rectangles prior to the SLG's whereas I had only included basics - I'll look into the other puzzles tomorrow.

Also, for the following puzzle I put my solver into survey mode with the following results

Hidden Text: Show
9..8..7...8..9..6...5..4...8..3..2...2.....7...4..5..81..2...3..3..8.9....7..3..1
MSLS 1 : Base 28; c147 r3569 + r3c2 r3c5 r5c3 r5c5 r5c9 r6c2 r6c8 r9c2 r9c5 : 21 Links; 2c1 8c7 ; 1367r3 134569r5 13679r6 4569r9 ;
MSLS 2 : Base 28; c1247 r359 + r3c5 r5c3 r5c5 r5c9 r9c5 : 16 Links; 2c1 8c7 ; 1367r3 134569r5 4569r9 ;
MSLS 3 : Base 28; c1247 r369 + r3c5 r6c8 r9c5 : 15 Links; 2c1 8c7 ; 1367r3 13679r6 4569r9 ;
MSLS 4 : Base 28; c1257 r379 + r3c4 r7c6 r7c9 r9c4 : 15 Links; 2c1 8c7 ; 1367r3 45679r7 4569r9 ;
MSLS 5 : Base 28; c1457 r359 + r3c2 r5c3 r5c9 r9c2 : 16 Links; 2c1 8c7 ; 1367r3 134569r5 4569r9 ;
MSLS 6 : Base 28; c1457 r369 + r3c2 r6c2 r6c8 r9c2 : 15 Links; 2c1 8c7 ; 1367r3 13679r6 4569r9 ;
MSLS 7 : Base 28; c1247 r3569 + r3c5 r5c3 r5c5 r5c9 r6c8 r9c5 : 21 Links; 2c1 8c7 ; 1367r3 134569r5 13679r6 4569r9 ;
MSLS 8 : Base 28; c1457 r3569 + r3c2 r5c3 r5c9 r6c2 r6c8 r9c2 : 21 Links; 2c1 8c7 ; 1367r3 134569r5 13679r6 4569r9 ;
MSLS 9 : Base 28; c12457 r359 + r5c3 r5c9 : 16 Links; 2c1 8c7 ; 1367r3 134569r5 4569r9 ;
MSLS 10 : Base 28; c12457 r369 + r6c8 : 15 Links; 2c1 8c7 ; 1367r3 13679r6 4569r9 ;

Which SLG you see first depends on your solving order and the spread of the solving parameters you use - so might explain some of the differences between our results.

Leren
Leren
 
Posts: 5123
Joined: 03 June 2012

Re: Exotic patterns a resume

Postby champagne » Thu Jul 11, 2013 3:17 pm

JC Van Hay wrote:Hope the following will help :


Impressive answer in a very short time.

This is exactly what I hoped to get.

After a quick overview, several remarks or questions

1) we have the same eliminations except in one puzzle where you give 2 different r0 logic
2) what is exactly behind the word "loop"? Sometimes, it looks like another word for r0 logic.
3) Some of the r0 logic (as in a former lot) are well known patterns as "Sue de Coq" "als with double link". I guess it would be faster to find them using the appropriate pattern search. Reversely, it seems that without such a pattern you use the generic term "loop" (see point 2)

AFAIK, most of the task is hand made, is it still true or do you have now a slave to do the job for you?
champagne
2017 Supporter
 
Posts: 7465
Joined: 02 August 2007
Location: France Brittany

Re: Exotic patterns a resume

Postby champagne » Thu Jul 11, 2013 3:26 pm

Leren wrote:I've resolved the following 4 additional puzzles:
The solution was that you had apparently included Skyscrapers, Kites and Empty rectangles prior to the SLG's whereas I had only included basics - I'll look into the other puzzles tomorrow.


I change the preliminary eliminations as I wrote earlier.
I added quads, XYWings, XYZWings and all "mono fish" eliminations in bloc. This include kites, but also more complex mono fish patterns.





Leren wrote:Which SLG you see first depends on your solving order and the spread of the solving parameters you use - so might explain some of the differences between our results.


that's quite clear, I just noticed that we don't work in the same order
champagne
2017 Supporter
 
Posts: 7465
Joined: 02 August 2007
Location: France Brittany

Re: Exotic patterns a resume

Postby Leren » Fri Jul 12, 2013 6:27 am

Hi Champagne,

The following are some MSLS solutions that have found for puzzle 98.7.......7.6.5.......4.738..........2.4...5.....124.7..1....2.2...96....3.2..5

Hidden Text: Show
Code: Select all
*--------------------------------------------------------------------------------*
| 9       8       145      | 7       135     235      |#14      26-1    6-14     |
| 134-2   134     7        |*289     6      #28       |*5      *1289   *1489     |
| 1256    156     156      | 2589    1589    4        | 89-1    7       3        |
|--------------------------+--------------------------+--------------------------|
| 8       1345679 14569    | 23569   3579    23567    | 1379    1369    1679     |
| 136     13679   2        | 3689    4       3678     | 13789   13689   5        |
| 356     35679   569      | 35689   35789   1        | 2       4       6789     |
|--------------------------+--------------------------+--------------------------|
| 7       4569    45689    |*1      #358    #3568     |*3489   *389    *2        |
| 145     2       1458     |*3458   #3578    9        |*6      *138    *1478     |
| 146     1469    3        |*468     2      *678      |*14789  *5      *14789    |
*--------------------------------------------------------------------------------*

MSLS 1 : Base 14; c4789 r2789 + r1c7 r2c6 r7c5 r7c6 r8c5 r9c6 : 17 Links; 4c4 4c7 4c9 ; 289r2 3r7 37r8 7r9 ; 856b8 1b3 198b9 ; 5 Eliminations r1c89, r3c7 <> 1, r1c9 <> 4, r2c2 <> 2

Code: Select all
*--------------------------------------------------------------------------------*
| 9       8      *145      |*7      *135    *235      |#14      26-1    6-14     |
| 1234    134    *7        |*289    *6      *28       | 5       1289    1489     |
| 2-156  #156    *156      |*2589   *1589   *4        | 89-1    7       3        |
|--------------------------+--------------------------+--------------------------|
| 8      #1345679*14569    |*23569  *3579   *23567    |#1379   #1369   #1679     |
| 136     13679   2        | 3689    4       3678     | 13789   13689   5        |
| 356     35679   569      | 35689   35789   1        | 2       4       6789     |
|--------------------------+--------------------------+--------------------------|
| 7       4569    45689    | 1       358     3568     | 3489    389     2        |
| 145     2       1458     | 3458    3578    9        | 6       138     1478     |
| 146     1469    3        | 468     2       678      | 14789   5       14789    |
*--------------------------------------------------------------------------------*

MSLS 1 : Base 28; c3456 r1234 + r1c7 r3c2 r4c2 r4c7 r4c8 r4c9 : 18 Links; 2c4 2c6 ; 1345r1 156r3 1345679r4 ; 89b2 ; 7 Eliminations r1c89, r3c17 <> 1, r1c9 <> 4, r3c1 <> 56

Code: Select all
*--------------------------------------------------------------------------------*
|*9      *8      *145      | 7       135     235      |#14      2-16   *146      |
|*1234   *134    *7        |#289     6      #28       | 5      #1289   *1489     |
|*1256   *156    *156      | 589-2   1589    4        | 89-1    7      *3        |
|--------------------------+--------------------------+--------------------------|
| 8       1345679 14569    | 23569   3579    23567    | 1379    1369    1679     |
| 136     13679   2        | 3689    4       3678     | 13789   13689   5        |
| 356     35679   569      | 35689   35789   1        | 2       4       6789     |
|--------------------------+--------------------------+--------------------------|
| 7       4569    45689    | 1       358     3568     | 3489    389     2        |
| 145     2       1458     | 3458    3578    9        | 6       138     1478     |
|*146    *1469   *3        |#468     2      #678      |#14789   5      *14789    |
*--------------------------------------------------------------------------------*

MSLS 1 : Base 35; c1239 r1239 + r1c7 r2c4 r2c6 r2c8 r9c4 r9c6 r9c7 : 18 Links; ; 46r1 2489r2 26r3 146789r9 ; 531b1 1b3 ; 4 Eliminations r1c8 <> 16, r3c4 <> 2, r3c7 <> 1

The third of these is almost the same as your solution but has one less link and one more elimination.

Leren
Leren
 
Posts: 5123
Joined: 03 June 2012

Re: Exotic patterns a resume

Postby Leren » Sat Jul 13, 2013 4:46 am

Hi Champagne, my versions of the last 2 unsolved (for me) puzzles in your list

Hidden Text: Show
98.7.......6.5.9.........436...9.2...2...8.....51...3.1..2....4.6..1.8....2..5.1.
Code: Select all
*--------------------------------------------------------------------------------*
|*9       8       34-1     | 7       2346    12346    |*156    *256    *1256     |
|*2347   #1347    6        |#34      5       12-43    |*9      *278    *1278     |
|*257    #157    #17       | 689     268     1269     |*167    *4      *3        |
|--------------------------+--------------------------+--------------------------|
| 6       1347    13478    | 345     9       347      | 2       578     1578     |
| 347     2       13479    | 3456    3467    8        | 14567   5679    15679    |
| 478     479     5        | 1       2467    2467     | 467     3       6789     |
|--------------------------+--------------------------+--------------------------|
| 1       3579    3789     | 2       3678    3679     | 3567    5679    4        |
|*3457    6      #3479     |#349     1      #3479     |*8      *2579   *2579     |
| 3478    3479    2        | 34689   34678   5        | 367     1       679      |
*--------------------------------------------------------------------------------*

MSLS 1 : Base 26; c1789 r1238 + r2c2 r2c4 r3c2 r3c3 r8c3 r8c4 r8c6 : 18 Links; 2c1 2c8 2c9 ; 5r1 3478r2 57r3 34579r8 ; 1b1 61b3 ; 3 Eliminations r1c3 <> 1, r2c6 <> 34

My MSLS solution for the above puzzle was slightly different to yours but had the same eliminations.

Hidden Text: Show
98.7.....6...5.8....5..4.9.3....5.8...79..5......2...1.1...6.3...95..6..........2
Code: Select all
*--------------------------------------------------------------------------------*
| 9      *8       1234     | 7       136     123      | 1234   *12456  *3456     |
| 6      *2347    1234     | 123     5       9        | 8      *1247   *347      |
| 127    *237     5        | 12368   1368    4        | 1237   *9      *367      |
|--------------------------+--------------------------+--------------------------|
| 3      *2469    1246     | 146     1467    5        | 247-9  *8      *4679     |
| 1248   #246     7        | 9       13468   138      | 5      #246    #346      |
| 458     59-46   468      | 3468    2       378      | 3479   #467     1        |
|--------------------------+--------------------------+--------------------------|
| 24578   1       248      | 248     4789    6        | 479     3       589-47   |
| 2478   #2347    9        | 5       13478   12378    | 6      #147     8-47     |
| 478-5  *34567   3468     | 1348    134789  1378     | 1479   *1457   *2        |
*--------------------------------------------------------------------------------*

MSLS 1 : Base 59; r12349 c289 + r5c2 r8c2 r5c8 r6c8 r8c8 r5c9 : 17 Links; 5r1 9r4 5r9 ; 23467c2 12467c8 3467c9 ; 8 Eliminations r4c7 <> 9, r6c2 <> 46, r78c9 <> 47, r9c1 <> 5

Thanks to JCVH for showing me the probable MSLS solution for the above puzzle - it speeded up the search process considerably.

BTW the eliminations for the MSLS move are close to those for the following Inverted W Wing loop for the same puzzle:

Hidden Text: Show
Code: Select all
*--------------------------------------------------------------------------------*
| 9       8       1234     | 7       136     123      | 1234    12456   3456     |
| 6       2347    1234     | 123     5       9        | 8       1247    347      |
| 127     237     5        | 12368   1368    4        | 1237    9       367      |
|--------------------------+--------------------------+--------------------------|
| 3      c2469    1246     | 146     1467    5        | 247-9   8      b4679     |
| 1248    246     7        | 9       13468   138      | 5       246     346      |
|e458    d59-46   468      | 3468    2       378      | 3479    467     1        |
|--------------------------+--------------------------+--------------------------|
|f24578   1       248      | 248     4789    6        | 479     3     ga59-478   |
| 2478    2347    9        | 5       13478   12378    | 6       147     478      |
| 478-5   34567   3468     | 1348    134789  1378     | 1479    1457    2        |
*--------------------------------------------------------------------------------*

(9) r7c9 = r4c9 - r4c2 = (9-5) r6c2 - r6c1 = r7c1 loop => r4c7 <> 9, r6c2 <> 46, r7c9 <> 478, r9c1 <> 5

Unfortunately my MSLS code is much too slow for this method to be of more than academic interest when the MSLS grid contains a large number of solved/given cells
(up to 6 in some of these examples) and lots of extra cells to complete a Rank 0 logic. Nevertheless I enjoyed the challenge of finding MSLS moves in all puzzles.

Leren
Leren
 
Posts: 5123
Joined: 03 June 2012

Re: Exotic patterns a resume

Postby champagne » Thu Jul 25, 2013 3:02 pm

a challenge for our experts in rank 0 logic

here a list of puzzles having likely the following properties

no Rank 0 logic found by my solver
A multi fish of 4 digits seems self solved (danny should find the same with the templates view)

As these puzzles have a minimum rating diamond 10.3 or more, the next move using chains nets should be complex;

Is there a rank 0 logic (several) to find

each file has the following content

puzzle;sequence number,family code;id code;number of eliminations found; digits of the multi fish.

(to danny, the count for eliminations out of the multi fish is a rough estimate, the true count could be sligthly different )

Hidden Text: Show
........1.....2.3...2.415....67......2..6.4..4.58...1..5......9.61......2...561..;795163;DOB;13_01;167;3789
..............1.23..1.245....67......1..6.2..2.58....4.5.....9..64......1...564..;796873;DOB;13_01;161;3789
........1.....2.....3.4.56......7.8...6.9.3...248..9....9....53.4...96..6...5....;371650;dob;12_12_03;160;1278
........1....23....245...3....4.......5...6...73..5.4..4..5..7.8....4...9..7.23..;394297;dob;12_12_03;160;1689
........1..2..3....4..5..2.....26.5..5..4..7.8.9........45...6...7.6.2...6....7.5;394298;dob;12_12_03;160;1389
..............1..2..2.3..45..3...6...2..4..3.4.7..58...3.9......75......2...5..73;394207;dob;12_12_03;159;1689
..............1..2..2.3..45..3...6...2..4..7.4.73.58...3.9......75......2...5..37;755858;dob;12_12_19;159;1689
........1.....2.....3.4..5......3.6...46..5...6..5.7.4..5.3..7.2...6..4.89......5;418484;dob;12_12_03;158;1289
..............1..2..3.4..15......6....14...37.8..7...1..5..4.7..3..5.9.42..73...6;246934;dob;12_12_03;158;2689
........1.....2.....3.4..5.....6.5.3..54..6...6.7...4...4.7..3.1...5..6.89...4...;322025;dob;12_12_03;158;1289
...........1..2..3.2..3..45....2.6...4.3...7.2.5.748.....75.....5...3.279........;836687;DOB;13_01;156;1689
...........1..2..3.2..3..45......6...4.3...7.2.5.748.....75.....5...3.279..2.....;833229;DOB;13_01;156;1689
..............1.23..2.345.....6.......3.27.5..8...37.....9.54....4.7...51....627.;759669;dob;12_12_19;156;1689
..............1.23.23.4.5........2...46.2...72..8..6...5..7..6..74.....59..4..7..;806854;DOB;13_01;155;1389
98.7..6..7..5..4....3.6....8..9...4..5.....6...9.568...9.6..7....7..2.1..........;1067551;GP;13_07;155;1234
98.7..6..7..5..4....3.6....8..9...4..5.....6...9.568...9.6..7....7..2..........1.;991824;GP;13_03;154;1234
........1....23....245...3....4.......5...6...73..5.4..4..5..7.8....4...9..7.2..3;795178;DOB;13_01;154;1689
........1..2..3....3..4..5....6.7....5.....38.9..5..4..8...45..3....9.8.9.5.8....;795179;DOB;13_01;154;1267
98.76.54.7...3...6.....5.2.4..3..69..37.....4....4....3...7...9..4...8.....1.....;1052456;GP;13_07;154;1258
........1.....2.....3.4.56......7.8...6.9.3...248..9....9....534....96..6...5....;694333;dob;12_12_19;154;1278
champagne
2017 Supporter
 
Posts: 7465
Joined: 02 August 2007
Location: France Brittany

Re: Exotic patterns a resume

Postby daj95376 » Thu Jul 25, 2013 5:19 pm

champagne wrote:A multi fish of 4 digits seems self solved (danny should find the same with the templates view)

My templates solver is very limited when it comes to multi-fish. However, it did report that all of champagne's puzzles were limited to 1/2/3 template combinations for the values provided. In the case of one template combination, it solves champagne's values in the puzzle.

Here's champagne's original list with <n> indicating the number of template combinations for champagne's 4-tuple.

Hidden Text: Show
Code: Select all
........1.....2.3...2.415....67......2..6.4..4.58...1..5......9.61......2...561..#795163;DOB;13_01;167;3789    <1>
..............1.23..1.245....67......1..6.2..2.58....4.5.....9..64......1...564..#796873;DOB;13_01;161;3789    <1>
........1.....2.....3.4.56......7.8...6.9.3...248..9....9....53.4...96..6...5....#371650;dob;12_12_03;160;1278 <1>
........1....23....245...3....4.......5...6...73..5.4..4..5..7.8....4...9..7.23..#394297;dob;12_12_03;160;1689 <1>
........1..2..3....4..5..2.....26.5..5..4..7.8.9........45...6...7.6.2...6....7.5#394298;dob;12_12_03;160;1389 <1>
..............1..2..2.3..45..3...6...2..4..3.4.7..58...3.9......75......2...5..73#394207;dob;12_12_03;159;1689 <2>
..............1..2..2.3..45..3...6...2..4..7.4.73.58...3.9......75......2...5..37#755858;dob;12_12_19;159;1689 <2>
........1.....2.....3.4..5......3.6...46..5...6..5.7.4..5.3..7.2...6..4.89......5#418484;dob;12_12_03;158;1289 <1>
..............1..2..3.4..15......6....14...37.8..7...1..5..4.7..3..5.9.42..73...6#246934;dob;12_12_03;158;2689 <1>
........1.....2.....3.4..5.....6.5.3..54..6...6.7...4...4.7..3.1...5..6.89...4...#322025;dob;12_12_03;158;1289 <1>
...........1..2..3.2..3..45....2.6...4.3...7.2.5.748.....75.....5...3.279........#836687;DOB;13_01;156;1689    <2>
...........1..2..3.2..3..45......6...4.3...7.2.5.748.....75.....5...3.279..2.....#833229;DOB;13_01;156;1689    <2>
..............1.23..2.345.....6.......3.27.5..8...37.....9.54....4.7...51....627.#759669;dob;12_12_19;156;1689 <1>
..............1.23.23.4.5........2...46.2...72..8..6...5..7..6..74.....59..4..7..#806854;DOB;13_01;155;1389    <3>
98.7..6..7..5..4....3.6....8..9...4..5.....6...9.568...9.6..7....7..2.1..........#1067551;GP;13_07;155;1234    <3>
98.7..6..7..5..4....3.6....8..9...4..5.....6...9.568...9.6..7....7..2..........1.#991824;GP;13_03;154;1234     <3>
........1....23....245...3....4.......5...6...73..5.4..4..5..7.8....4...9..7.2..3#795178;DOB;13_01;154;1689    <1>
........1..2..3....3..4..5....6.7....5.....38.9..5..4..8...45..3....9.8.9.5.8....#795179;DOB;13_01;154;1267    <1>
98.76.54.7...3...6.....5.2.4..3..69..37.....4....4....3...7...9..4...8.....1.....#1052456;GP;13_07;154;1258    <1>
........1.....2.....3.4.56......7.8...6.9.3...248..9....9....534....96..6...5....#694333;dob;12_12_19;154;1278 <1>

Here's my Template solver's output for champagne's values in the first puzzle.

Hidden Text: Show
Code: Select all
Puzzle #1:

........1.....2.3...2.415....67......2..6.4..4.58...1..5......9.61......2...561..

 +-----------------------+
 | . . . | . . . | . . 1 |
 | . . . | . . 2 | . 3 . |
 | . . 2 | . 4 1 | 5 . . |
 |-------+-------+-------|
 | . . 6 | 7 . . | . . . |
 | . 2 . | . 6 . | 4 . . |
 | 4 . 5 | 8 . . | . 1 . |
 |-------+-------+-------|
 | . 5 . | . . . | . . 9 |
 | . 6 1 | . . . | . . . |
 | 2 . . | . 5 6 | 1 . . |
 +-----------------------+

   c5b5  Locked Candidate 1              <> 2    r78c5
 r5  b5  Locked Candidate 1              <> 5    r5c89

 +--------------------------------------------------------------------------------+
 |  356789  34789   34789   |  3569    3789    35789   |  26789   246789  1       |
 |  156789  14789   4789    |  569     789     2       |  6789    3       4678    |
 |  36789   3789    2       |  369     4       1       |  5       6789    678     |
 |--------------------------+--------------------------+--------------------------|
 |  1389    1389    6       |  7       1239    4       |  2389    2589    2358    |
 |  13789   2       3789    |  1359    6       359     |  4       789     378     |
 |  4       379     5       |  8       239     39      |  23679   1       2367    |
 |--------------------------+--------------------------+--------------------------|
 |  378     5       3478    |  1234    1378    378     |  23678   24678   9       |
 |  3789    6       1       |  2349    3789    3789    |  2378    24578   234578  |
 |  2       34789   34789   |  349     5       6       |  1       478     3478    |
 +--------------------------------------------------------------------------------+
 # 174 eliminations remain

 Templates: 3 11 217 10 6 12 140 226 166

 <3789>        accepted = 1 template combinations

 <3789>   <>3  r1c12456,r3c12,r4c1259,r5c1349,r6c5679,r7c13467,r8c45679,r9c234
 <3789>   <>7  r1c123568,r2c12379,r3c189,r5c189,r6c27,r7c35678,r8c15789,r9c239
 <3789>   <>8  r1c123678,r2c12579,r3c129,r4c2789,r5c138,r7c13578,r8c15689,r9c389
 <3789>   <>9  r1c1235678,r2c12345,r3c248,r4c1578,r5c1346,r6c257,r8c146,r9c24

 <3789>   <>1  r4c12,r7c5
 <3789>   <>2  r148c7,r6c9
 <3789>   <>4  r1c3,r2c3,r9c2389
 <3789>   <>5  r1c4,r5c6
 <3789>   <>6  r1c47,r2c7,r3c148,r6c9

 <3789>        r1c3457,r2c357,r3c1248,r4c127,r5c3689,r6c269,r7c156,r8c1567,r9c2389   locked for candidates
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: Exotic patterns a resume

Postby JC Van Hay » Fri Jul 26, 2013 1:30 am

Solution of the puzzle #1 : ........1.....2.3...2.415....67......2..6.4..4.58...1..5......9.61......2...561..;795163;DOB;13_01;167;3789

#1. r4c6=4; UP24; LC(2C4,5R4) :=> -2r78c5,-5r5c89
#2. Analysis of AALS(3789)r78c1 :

r7or8c1=3->Swordfish(3R39C3) :=> -3r5c49
||
r7or8c1=7->LC(7B8)+Kite(7R3c7) :=> r5c3=7
||
r7or8c1=8->LC(8B8)+Kite(8R3C7) :=> r5c3=8
||
r8c1=9->NQ(3569)r1239c4; UP29; Skyscraper(9R35) :=> r5c3=9

-> r7or8c1=3, r5c3<>3 :=> r5c6=3; UP46; NP(78)r7c16

#3. Jellyfish(7R3569) :=> -7r12c3
#4. Jellyfish(8R3478) :=> -8r12c7
#5. Swordfish(8C279) :=> -8r9c8; UP81
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: Exotic patterns a resume

Postby champagne » Fri Jul 26, 2013 9:40 am

JC Van Hay wrote:Solution of the puzzle #1 : ........1.....2.3...2.415....67......2..6.4..4.58...1..5......9.61......2...561..;795163;DOB;13_01;167;3789
#2. Analysis of AALS(3789)r78c1 :

r7or8c1=3->Swordfish(3R39C3) :=> -3r5c49
||
r7or8c1=7->LC(7B8)+Kite(7R3c7) :=> r5c3=7
||
r7or8c1=8->LC(8B8)+Kite(8R3C7) :=> r5c3=8
||
r8c1=9->NQ(3569)r1239c4; UP29; Skyscraper(9R35) :=> r5c3=9

-> r7or8c1=3, r5c3<>3 :=> r5c6=3; UP46; NP(78)r7c16



Hi JC,

I am trying to decipher your point #2 to see what would be the corresponding sets/links.

I am in trouble in several points. Could you post your PM at the start of your AALS analysis.

(among others, I don't see your swordfish nor your Naked Quad.)

BTW, with the use of the 3569 quad, IMO this would not be qualified as a 3789 multi fish solution
champagne
2017 Supporter
 
Posts: 7465
Joined: 02 August 2007
Location: France Brittany

Re: Exotic patterns a resume

Postby JC Van Hay » Fri Jul 26, 2013 2:51 pm

champagne wrote:
JC Van Hay wrote:Solution of the puzzle #1 : ........1.....2.3...2.415....67......2..6.4..4.58...1..5......9.61......2...561..;795163;DOB;13_01;167;3789
#2. Analysis of AALS(3789)r78c1 :

r7or8c1=3->Swordfish(3R39C3) :=> -3r5c49
||
r7or8c1=7->LC(7B8)+Kite(7R3c7) :=> r5c3=7
||
r7or8c1=8->LC(8B8)+Kite(8R3C7) :=> r5c3=8
||
r8c1=9->NQ(3569)r1239c4; UP29; Skyscraper(9R35) :=> r5c3=9

-> r7or8c1=3, r5c3<>3 :=> r5c6=3; UP46; NP(78)r7c16



Hi JC,

I am trying to decipher your point #2 to see what would be the corresponding sets/links.

I am in trouble in several points. Could you post your PM at the start of your AALS analysis.

(among others, I don't see your swordfish nor your Naked Quad.)

BTW, with the use of the 3569 quad, IMO this would not be qualified as a 3789 multi fish solution

Hi Champagne,
I didn't see a multi-fish on 3789. Therefore I concentrated on a solution of the puzzle as in any puzzle containing an exocet. Here (6789)r3c89, (3478)r7c13, (3789)r78c1 are "potential ones".
While reviewing the solution of the puzzle #1, I noticed that I missed the more obvious conclusion of the analysis of the AALS(3789)r78c1, to wit r7or8c1=3, r5c3<>3 :=> r1c3=3 and UP50 :(.
As for the base/cover sets of #2., here it is :
Code: Select all
+------------------------------+------------------------+-------------------------+
| 56789-3   34789     34789    | (3569)  3789    35789  | 269(78)  246789  1      |
| 156789    14789     4789     | (569)   789     2      | 69(78)   3       4678   |
| 6-3(789)  3(789)    2        | (369)   4       1      | 5        6(789)  6(78)  |
+------------------------------+------------------------+-------------------------+
| 1-3(89)   13(89)    6        | 7       1239    4      | 239(8)   2589    2358   |
| 1-3(789)  2         -3(789)  | 13(59)  6       3(59)  | 4        78(9)   378    |
| 4         3(79)     5        | 8       239     39     | 2369(7)  1       2367   |
+------------------------------+------------------------+-------------------------+
| (378)     5         478-3    | 1234    13(78)  3(78)  | 236(78)  24678   9      |
| (3789)    6         1        | 2349    39(78)  39(78) | 23(78)   24578   234578 |
| 2         478-3(9)  478-3(9) | 34(9)   5       6      | 1        478     3478   |
+------------------------------+------------------------+-------------------------+
18 Truths = {5R5 7R3 8R3 9R359 78C7 78N1 123N4 789B4 78B8}
24 Links = {7r678 8r478 3c1 5c4 7c12 8c12 9c1248 5n36 3b27 6b2 7b3 8b3 9b7}
8 Eliminations --> r1345c1<>3, r579c3<>3, r9c2<>3

On the other hand,
  1. Swordfish(3R39C3) : r5c3=r1c3-r3c2=r3c4-r9c4=r9c9 :=> -3r5c49
  2. Kite(7R3c7) : r6c7=r12c7-r3c89=r3c2 :=> -7r6c2 :=> r5c3=7
  3. Kite(8R3C7) : r4c7=r12c7-r3c89=r3c2 :=> -8r4c2 :=> r5c3=8
  4. NQ(3569)... : 9r8c1-[9r35c1# & 9r9c23=9r9c4-(9#=356)r123c4-5r5c4#=(5-9#)r4c6]=#Skyscraper(9R35)-9r46c2=9r5c3
Final comments :
  1. I wrote #2. in a very condensed way in order to show explicitly its most important characteristics. Otherwise, it would have been overly complicated.
  2. In this puzzle, it is as if the "target" were a single cell instead of two as in an ordinary exocet !?
  3. I didn't look at the solutions of all the other puzzles, but the solution of #991824 is interesting as r89c2<>NP(34) gives rise to a very fast contradiction in all cases. After that, sk-basics solve the puzzle.
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: Exotic patterns a resume

Postby daj95376 » Fri Jul 26, 2013 4:47 pm

JC Van Hay wrote:Solution of the puzzle #1 :

........1.....2.3...2.415....67......2..6.4..4.58...1..5......9.61......2...561..;795163;DOB;13_01;167;3789

#1. r4c6=4; UP24; LC(2C4,5R4) :=> -2r78c5,-5r5c89
#2. Analysis of AALS(3789)r78c1 :

r7or8c1=3->Swordfish(3R39C3) :=> -3r5c49
||
r7or8c1=7->LC(7B9)+Kite(7R3c7) :=> r5c3=7
||
r7or8c1=8->LC(8B9)+Kite(8R3C7) :=> r5c3=8
||
r8c1=9->r9c4=9; NT(356)r123c4; UP29; Skyscraper(9R35) :=> r5c3=9

-> r7or8c1=3, r5c3<>3 :=> r5c6=3; UP46; NP(78)r7c16

#3. Jellyfish(7R3569) :=> -7r12c3
#4. Jellyfish(8R3478) :=> -8r12c7
#5. Swordfish(8C279) :=> -8r9c8; UP81

I made a couple of corrections and changes to step #2.

Note: I already have r1c3<>7 after step #2.

Code: Select all
 after the dust clears from step #2
 *--------------------------------------------------------------------*
 | 6789   4      3      | 69     78     5      | 26789  26789  1      |
 | 5      1      789    | 69     78     2      | 6789   3      4      |
 | 6789   789    2      | 3      4      1      | 5      6789   678    |
 |----------------------+----------------------+----------------------|
 | 89     389    6      | 7      1      4      | 389    5      2      |
 | 1      2      789    | 5      6      3      | 4      789    78     |
 | 4      37     5      | 8      2      9      | 367    1      67     |
 |----------------------+----------------------+----------------------|
 | 78     5      4      | 1      3      78     | 26     26     9      |
 | 3      6      1      | 2      9      78     | 78     4      5      |
 | 2      789    789    | 4      5      6      | 1      78     3      |
 *--------------------------------------------------------------------*

It would have been nice if you'd included the cover sets for #3..#5, because I can't get your base set for #3 to work with my grid.

You miss the Eureka! forum ... don't you! _ :lol: _
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

PreviousNext

Return to Advanced solving techniques