98.7..6..5.7.4..3...2......4...3..1..7......8..6...2.....3.4.9.....95.......7...1;r9c4 r9c6 r7c1 r8c8 268 Lot3:414
- Code: Select all
*-------------------------*-------------------------*-------------------------*
| 9 8 134 | 7 125 13-2 | 6 245 45-2 |
| 5 16 7 | 12689 4 12689 | 189 3 29 |
| 136 1346 2 | 1569-8 1568 1369-8 | 14579-8 4578 4579 |
*-------------------------*-------------------------*-------------------------*
| 4 259 589 | 25689 3 26789 | 579 1 5679 |
| 123 7 1359 | 14569-2 1256 169-2 | 3459 456 8 |
| 138 1359 6 | 1459-8 158 179-8 | 2 457 34579 |
*-------------------------*-------------------------*-------------------------*
| 278-16 1256 158 | 3 16-28 4 | 578 9 2567 |
| 278-136 1346-2 134-8 | 16-28 9 5 | 3478 28-467 23467 |
| 36-28 34569-2 3459-8 | 28-6 7 28-6 | 345-8 456-28 1 |
*-------------------------*-------------------------*-------------------------*
(268)TwinJExocet:r9c46,r8c8,(7)r78c1 => r7c1 <> 1, r8c1 <> 13, r8c8 <> 47
Compatibility check:
(2)r8c8 = (2)r1c8 - (2)r2c8 = (2#2)r29c46
(6)r8c8 = (6)r5c8 - (6)r9c1 = (6#2)r59c46 (incompatible)
(8)r8c8 = (8)r3c8 - (8)r2c7 = (8#2)r29c46
. . => r78c1,r9c46,r8c8 <> 6, (base & target cells)
. . r9c18 <> 28, r9c2 <>2, r9c7 <> 8, r7c5,r8c4 <> 28, (seen by base cells)
. . r8c2 <> 2, r8c3 <> 8, (seen by targets (278)r78c1 & (28)r8c8 )
. . r1c68 <> 2, r3c467 <> 8, (fin cells to "skewed" Swordfish)
. . r5c46 <> 2, r6c46 <> 8 (seen by the alternative X-wings (2)r9+[2|5]c46 & (8)r9+[2|4]c46)
(32 eliminations to this point from the nearly resolved pattern)
The key step now is to analyse the URs that can be made with the twin digit (7)r78c1 in the JExocet band
The threats are (27)r78c19 and (78)r78c16
(7)r6c8 = (7-8)r3c8 = (8-2)r8c8 =[JE]= (2#2)r78c19 -[UR]- (7#2)r78c19 = (7#2)r78c17 => r4c7 <> 7
This step, which is dependent on the derived JExocet inference, opens up the puzzle to being solvable by AICs. I suspect it may be a common feature of Twin JExocets, and without it I would have to resort to it nets.