daj95376 wrote:You might change your parameters to use <14678> (if possible). Templates like them a lot.
...
No, I don't know if this has anything to do with the Exocet or not.
ronk wrote:Thanks. Don't you get about 31 of those eliminations with just <1678>-templates?
daj95376 wrote:Ron,
You might change your parameters to use <14678> (if possible). Templates like them a lot.
No, I don't know if this has anything to do with the Exocet or not. _ _
...4....94....923..8..2...4..6..3...8..59...2.......7.3..9....5..8..21...1...5...
+--------------------------------------------------------------------------------+
| 12567 23567 12357 | 4 135678 1678 | 5678 1568 9 |
| 4 567 157 | 1678 15678 9 | 2 3 1678 |
| 15679 8 13579 | 1367 2 167 | 567 156 4 |
|--------------------------+--------------------------+--------------------------|
| 12579 24579 6 | 1278 1478 3 | 4589 14589 18 |
| 8 347 1347 | 5 9 1467 | 346 146 2 |
| 1259 23459 123459 | 1268 1468 1468 | 345689 7 1368 |
|--------------------------+--------------------------+--------------------------|
| 3 2467 247 | 9 14678 14678 | 4678 2468 5 |
| 5679 45679 8 | 367 3467 2 | 1 469 367 |
| 2679 1 2479 | 3678 34678 5 | 346789 24689 3678 |
+--------------------------------------------------------------------------------+
# 180 eliminations remain
16...7.8...718...6.8.6..71...671...8871..6........8671....7186.6.8...1.771.86....
+-----------------------+
| 1 6 . | . . 7 | . 8 . |
| . . 7 | 1 8 . | . . 6 |
| . 8 . | 6 . ~ | 7 1 . |
|-------+-------+-------|
| . . 6 | 7 1 . | . . 8 |
| 8 7 1 | . . 6 | . . . |
| . . . | . . 8 | 6 7 1 |
|-------+-------+-------|
| . . . | . 7 1 | 8 6 . |
| 6 . 8 | . . . | 1 . 7 |
| 7 1 . | 8 6 . | . . . |
+-----------------------+
<1678> <>1 r1c356,r2c39,r3c346,r4c18,r5c68,r6c136,r7c5
<1678> <>3 r5c3
<1678> <>4 r5c3,r7c56
<1678> <>6 r7c6
<1678> <>7 r2c24,r5c3,r7c6,r8c2
<1678> <>8 r1c5,r6c9,r7c56,r9c789
daj95376 wrote:I still had 252 combinations remaining ...
champagne wrote:...4....94....923..8..2...4..6..3...8..59...2.......7.3..9....5..8..21...1...5...;1952;elev;1806
- Code: Select all
A B C |D E F |G H I
12567 23567 12357 |4 135678 1678* |5678 1568 9
4 567 157 |1678 15678 9 |2 3 1678*
15679 8 13579 |1367 2 167* |567 156 4
--------------------------------------------------------
12579 24579 6 |1278 1478 3 |4589 14589 18
8 347 1347 |5 9 1467 |346 146 2
1259 23459 123459 |1268 1468 1468 |345689 7 1368
--------------------------------------------------------
3 2467 247 |9 14678* 14678 |4678 2468 5
5679 45679 8 |367 3467 2 |1 469 367
2679 1 2479 |3678 34678 5 |346789 24689 3678
Here we have a valid exocet based on r13c6
the target is r2c9 r7c5
+-----------------------------------+ +-----------------------------------+
| . . . | . . A | . . . | | . . . | . . A | . . . |
| . . . | . . . | . . A | | . . . | . . . | . . B |
| . . . | . . B | . . . | | . . . | . . B | . . . |
|-----------+-----------+-----------| |-----------+-----------+-----------|
| . . . | . . . | . . . | | . . . | . . . | . . . |
| . . . | . . . | . . . | | . . . | . . . | . . . |
| . . . | . . . | . . . | | . . . | . . . | . . . |
|-----------+-----------+-----------| |-----------+-----------+-----------|
| . . . | . B . | . . . | | . . . | . A . | . . . |
| . . . | . . . | . . . | | . . . | . . . | . . . |
| . . . | . . . | . . . | | . . . | . . . | . . . |
+-----------------------------------+ +-----------------------------------+
r13c6=1 => r2c9=1 and r7c5=1
r13c6=6 => r2c9=6 and r7c5=?
r13c6=7 => r2c9=? and r7c5=7
r13c6=8 => r2c9=8 and r7c5=?
{16} => not possible because r2c9=1 and r2c9=6
{17} => not possible because r7c5=1 and r7c5=7
{18} => not possible because r2c9=1 and r2c9=8
{67} => possible because r2c9=6 and r7c5=7
{68} => not possible because r2c9=6 and r2c9=8
{78} => possible because r2c9=8 and r7c5=7
daj95376 wrote:Now, without getting buried in details, a general analysis of the base cells impact on the target cells.
- Code: Select all
r13c6=1 => r2c9=1 and r7c5=1
r13c6=6 => r2c9=6 and r7c5=?
r13c6=7 => r2c9=? and r7c5=7
r13c6=8 => r2c9=8 and r7c5=?
r13c6=1 => r7c5=1
r13c6=6 => r2c9=6 or r7c5=6
r13c6=7 => r2c9=7 or r7c5=7
r13c6=8 => r2c9=8
*------------*-----------*----------*
| abc abc . | . . . | . . . |
| . . . | / . . | / . . | / = (abc) excluded
| . . . | T1 . . | T2 . . | T1, T2 = target cells
*------------*-----------*----------*
| . . a | a . . | . . . |
| . . bc | b . . | bc . . |
| . . . | . . . | . . . |
*------------*-----------*----------*
| . . ab | ab . . | a . . |
| . . . | . . . | . . . |
| . . c | c . . | c . . |
*------------*-----------*----------*
champagne wrote:The correct wording for me is
- Code: Select all
r13c6=1 => r7c5=1
r13c6=6 => r2c9=6 or r7c5=6
r13c6=7 => r2c9=7 or r7c5=7
r13c6=8 => r2c9=8
r13c6=1 => <1> eliminated elsewhere in [b2] and [c6]
r7c5=1 follows => r46c5<>1
+-----------------------------------+
| 1 . 1 | . -1 +1 | . 1 . |
| . . 1 | -1 -1 . | . . 1 |
| 1 . 1 | -1 . +1 | . 1 . |
|-----------+-----------+-----------|
| 1 . . | 1 -1 . | . 1 1 |
| . . 1 | . . -1 | . 1 . |
| 1 . 1 | 1 -1 -1 | . . 1 |
|-----------+-----------+-----------|
| . . . | . +1 -1 | . . . |
| . . . | . . . | 1 . . |
| . 1 . | . . . | . . . |
+-----------------------------------+
-followed by-
r2c9<>1 => r2c3=1 => r13c1<>1 => X-Wing r46c19 => r46c4<>1; [b5]<>1 => r2c9=1
r13c6=1 => r2c9=1 and r7c5=1 q.e.d.
David P Bird wrote:champagne, does your database of puzzles contain any instances of this twist on the classic one-band Exocet?
- Code: Select all
*------------*-----------*----------*
| abc abc . | . . . | . . . |
| . . . | / . . | / . . | / = (abc) excluded
| . . . | T1 . . | T2 . . | T1, T2 = target cells
*------------*-----------*----------*
| . . a | a . . | . . . |
| . . bc | b . . | bc . . |
| . . . | . . . | . . . |
*------------*-----------*----------*
| . . ab | ab . . | a . . |
| . . . | . . . | . . . |
| . . c | c . . | c . . |
*------------*-----------*----------*
Perhaps this form is trivial for your solver, but unless I've missed something, it would extend the scope of the pattern for manual solvers.
DPB
daj95376 wrote:champagne wrote:The correct wording for me is
- Code: Select all
r13c6=1 => r7c5=1
r13c6=6 => r2c9=6 or r7c5=6
r13c6=7 => r2c9=7 or r7c5=7
r13c6=8 => r2c9=8
First, let me help update your table of cells assigned by r13c6=1.
- Code: Select all
r13c6=1 => <1> eliminated elsewhere in [b2] and [c6]
r2c9<>1 => r2c3=1 => r13c1<>1 => X-Wing r46c19 => r46c4<>1; [b5]<>1 => r2c9=1
Second, I was looking for an alternate perspective that was more in line with my template solver's results for <1678>-template. As an additional benefit, I discovered that the alternate perspective uses the value-assigned cells to lock in where the target cells could exist. Leaving open the possibility that the target cells don't necessarily need to have all four candidates present -- i.e., r7c5=17 would be sufficient to still deduce some eliminations.
David P Bird wrote:I'm interested in your multi-fish but I'm not sure what the term describes as it seems rather general. To be of most use to a manual solver, I think all the truths (or strong links) should be counted by rows and the weak links counted by columns or vice-versa -
<Here> You mention a multi-fish approach that reduces an SE 11.9 puzzle to 8.3, but I don't see it! Not wanting to go off topic, I'd be grateful if you (or perhaps ronk) would describe that either in a fresh thread or in a PM to me.
DPB
__ A____ B_____ C____ |D___ E____ F____ |G____ H____ I____
1||1____ 2_____ 689__ |3___ 46789 45679 |45789 4579_ 458__
2||4____ 389___ 5____ |2789 12789 179__ |6____ 1379_ 138__
3||389__ 7_____ 3689_ |689_ 14689 14569 |4589_ 2____ 13458
4||6____ 589___ 2789_ |1___ 2479_ 479__ |3____ 457__ 2458_
5||2789_ 189___ 4____ |5___ 3____ 679__ |278__ 167__ 1268_
6||2357_ 135___ 1237_ |267_ 2467_ 8____ |2457_ 14567 9____
7||23789 3689__ 23789 |4___ 5____ 3679_ |1____ 369__ 236__
8||23579 134569 12379 |679_ 1679_ 13679 |2459_ 8____ 23456
9||359__ 134569 139__ |689_ 1689_ 2____ |459__ 34569 7____
A____ B____ C____ |D___ E____ F___ |G___ H___ I____
X X 89+ |X 789+ 79+ |789+ 79+ 8+
X 89+ X |2789* 2789+* 79+ |X 79+ 8+ <==
89+ X 89+ |89+ 89+ 9+ |89+ X 8+
X 89+ 2789* |X 279+* 79+ |X 7+ 28+ <==
2789* 89+ X |X X 79+ |278* 7+ 28+ <==
27+ X 27+ |27+ 27+ X |27+ 7+ X
2789+* 89+ 2789+*|X X 79+ |X 9+ 2+ <==
279+ 9+ 279+ |79+ 79+ 79+ |29+ X 2+
9+ 9+ 9+ |89+ 89+ X |9+ 9+ X
xx xx xx xx
champagne wrote:In the following puzzle, we have a row based pure rank 0 logic.
12.3.....4.5...6...7.....2.6..1..3....453.........8..9...45.1.........8......2..7;5;elev;1;;;;;G1
...
I could produce the XSUDO diagram, but I am not familiar with the process to show it in the post.
16 Truths = {2R2457 7R2457 8R2457 9R2457}
16 Links = {2c9 7c68 8c29 9c268 57n1 47n3 2n4 24n5 5n7}
18 Eliminations --> r138c6<>9, r1c68<>7, r7c13<>3, r9c28<>9, r13c9<>8, r1c8<>9, r2c5<>1,
r4c5<>4, r6c8<>7, r8c9<>2, r8c6<>7, r8c2<>9
20 Truths = {2C13457 7C13457 8C13457 9C13457}
20 Links = {2r68 7r168 8r139 9r1389 57n1 47n3 2n4 24n5 5n7}
18 Eliminations --> r138c6<>9, r1c68<>7, r7c13<>3, r9c28<>9, r13c9<>8, r1c8<>9, r2c5<>1,
r4c5<>4, r6c8<>7, r8c9<>2, r8c6<>7, r8c2<>9