- Code: Select all
*-----------*
|...|.1.|...|
|43.|.72|.1.|
|2.9|6.5|...|
|---+---+---|
|8..|...|2..|
|.26|.9.|54.|
|..4|...|..6|
|---+---+---|
|...|1.6|8.7|
|.8.|74.|.53|
|...|.2.|...|
*-----------*
Play/Print this puzzle online
*-----------*
|...|.1.|...|
|43.|.72|.1.|
|2.9|6.5|...|
|---+---+---|
|8..|...|2..|
|.26|.9.|54.|
|..4|...|..6|
|---+---+---|
|...|1.6|8.7|
|.8.|74.|.53|
|...|.2.|...|
*-----------*
+----------------------+---------------------+--------------------+
| 57 6 57 | 348 1 348 | 39 389 2 |
| 4 3 8 | 9 7 2 | 6 1 5 |
| 2 1 9 | 6 3-8 5 | 347 378 a48* |
+----------------------+---------------------+--------------------+
| 8 579 1357 | F345 6 1347 | 2 379 19 |
| 137 2 6 | e38 9 1378 | 5 4 a18* |
| 1357 579 4 | 2 Ga358* b1378 | 379 a3789* 6 |
+----------------------+---------------------+--------------------+
| 9 4 35 | 1 35 6 | 8 2 7 |
| 6 8 2 | 7 4 9 | 1 5 3 |
| 1357 57 1357 |Ed358 2 c38 | 49 6 49 |
+----------------------+---------------------+--------------------+
(8=3)r5c4 - (3)r6c5
/ e G \\
[kite(8)r6c5==r6c8-r5c9=r3c9] = (8)r6c6 - r9c6 = r9c4 (8)r6c5 => -8 r3c5; ste
a b c d \ // G
(5)r9c4 = r4c4 - (5)r6c5
E F G
*------------------------------------------------------------*
| 57 6 57 | b348 1 348 | 39 389 2 |
| 4 3 8 | 9 7 2 | 6 1 5 |
| 2 1 9 | 6 c38 5 | 347 378 b48 |
*-------------------+--------------------+-------------------|
| 8 579 1357 | 345 6 1347 | 2 379 19 |
| 137 2 6 |be38 9 1378 | 5 4 b18 |
| 1357 579 4 | 2 de358 1378 | 379 3789 6 |
*-------------------+--------------------+-------------------|
| 9 4 35 | 1 de35 6 | 8 2 7 |
| 6 8 2 | 7 4 9 | 1 5 3 |
| 1357 57 1357 | a8-35 2 38 | 49 6 49 |
*------------------------------------------------------------*
.------------------.----------------------.--------------------.
| 57 6 57 | 348 1 348 | 39 389 2 |
| 4 3 8 | 9 7 2 | 6 1 5 |
| 2 1 9 | 6 3-8 5 | 347 378 dB4(8) |
:------------------+----------------------+--------------------:
| 8 579 1357 | 345 6 1347 | 2 379 19 |
| 137 2 6 | A38 9 1378 | 5 4 dB18 |
| 1357 579 4 | 2 caA35(8) c1378 | 379 c3789 6 |
:------------------+----------------------+--------------------:
| 9 4 35 | 1 a35 6 | 8 2 7 |
| 6 8 2 | 7 4 9 | 1 5 3 |
| 1357 57 1357 | 358 2 b38 | 49 6 49 |
'------------------'----------------------'--------------------'
Kraken Cell (358)r6c5
(38)b5p84 - 8r(5=3)c9 [A-B]
||
(5*3)r67c5 - (3=8)r9c6 - 8r6c(*56=8) - 8r(5=3)c9 [a-d]
||
(8)r6c5
=> -8 r3c5; stte
+-----------------+-------------------+------------------+
| 57 6 57 | a348 1 a348 | 39 389 2 |
| 4 3 8 | 9 7 2 | 6 1 5 |
| 2 1 9 | 6 a3-8 5 | 347 378 e48 |
+-----------------+-------------------+------------------+
| 8 579 1357 | 345 6 1347 | 2 379 19 |
| 137 2 6 | d38 9 1378 | 5 4 e18 |
| 1357 579 4 | 2 c358 c1378 | 379 c3789 6 |
+-----------------+-------------------+------------------+
| 9 4 35 | 1 35 6 | 8 2 7 |
| 6 8 2 | 7 4 9 | 1 5 3 |
| 1357 57 1357 | 358 2 b38 | 49 6 49 |
+-----------------+-------------------+------------------+
Kraken Duo => -8r3c5; stte
a b c
3r1c6 - (3=8)r9c6 - 8r6c6
|| ||
|| 8r6c5 ---------------
|| || e \
|| 8r6c8 - 8r5c9 = 8r3c9 - 8r3c5
|| d / /
3r1c4 - (3=8)r5c4 ------- /
|| /
3r3c5 ---------------------------------
*-----------------------------------------------------------------*
| 57 6 57 | c3+48 1 348 | 39 389 2 |
| 4 3 8 | 9 7 2 | 6 1 5 |
| 2 1 9 | 6 a38 5 | 347 378 #48 |
|----------------------+---------------------+--------------------|
| 8 579 1357 | c3+45 6 1347 | 2 379 19 |
| 137 2 6 | b38 9 1378 | 5 4 #18 |
| 1357 579 4 | 2 c3+58 1378 | 379 3789 6 |
|----------------------+---------------------+--------------------|
| 9 4 35 | 1 35 6 | 8 2 7 |
| 6 8 2 | 7 4 9 | 1 5 3 |
| 1357 57 1357 | 358 2 38 | 49 6 49 |
*-----------------------------------------------------------------*
+----------------+-------------------+-----------------+
| 57 6 57 | 348* 1 348# | 39 389* 2 |
| 4 3 8 | 9 7 2 | 6 1 5 |
| 2 1 9 | 6 3-8* 5 | 347 378# 48 |
+----------------+-------------------+-----------------+
| 8 579 1357 | 345 6 1347 | 2 379 19 |
| 137 2 6 | 38 9 1378 | 5 4 18 |
| 1357 579 4 | 2 358* 1378# | 379 3789* 6 |
+----------------+-------------------+-----------------+
| 9 4 35 | 1 35 6 | 8 2 7 |
| 6 8 2 | 7 4 9 | 1 5 3 |
| 1357 57 1357 | 358 2 3-8 | 49 6 49 |
+----------------+-------------------+-----------------+
8r1c6,r3c8 => -8r3c5; stte
||
8r6c6 => -8r9c6; stte
Sudtyro2 wrote:My old brain wants to say yes, but SpaCe pointed out for a similar situation here that this is probably not the case. There does exist a derived weak inference between the two stte digits, so at least one must be false, but we have not shown a "common outcome" that would definitely eliminate one of the two digits. Do the Forum rules for stte eliminations specifically require that common outcome? Comments would be most welcome!
In 8s, 5-link oddagon(*) having three guardians(#):
Kraken box (3)b8p279
(3)r9c6 - (8)r9c6
(3-5)r7c5 = r6c5 - (8)r6c5 = (8)r3c5 demonstrating " 8r9c6 => 8r3c5 " or equivalent " -8r3c5 => -8r9c6 "
(3)r9c4 - (3=8)r5c4 /
Therefore:
8r1c6,r3c8 => -8r3c5 => -8r9c6 }
|| } -8 r9c6; ste
8r6c6 => -8r9c6 }
Sudtyro2 wrote:In 8s, a simple 5-link oddagon(*) having three guardians(#).
Guardians 8r1c6,r3c8 directly see 8r3c5, while guardian 8r6c6 needs a network to remotely see 8r3c5. But, guardian 8r6c6 does directly see 8r9c6. Since at least one guardian must be true, let's write the following kraken column:We've avoided the long network solution, but is the logic valid? My old brain wants to say yes, but SpaCe pointed out for a similar situation here that this is probably not the case. There does exist a derived weak inference between the two stte digits, so at least one must be false, but we have not shown a "common outcome" that would definitely eliminate one of the two digits. Do the Forum rules for stte eliminations specifically require that common outcome? Comments would be most welcome!
- Code: Select all
8r1c6,r3c8 => -8r3c5; stte
||
8r6c6 => -8r9c6; stte
SteveG48 wrote:
- Code: Select all
*------------------------------------------------------------*
| 57 6 57 | b348 1 348 | 39 389 2 |
| 4 3 8 | 9 7 2 | 6 1 5 |
| 2 1 9 | 6 c38 5 | 347 378 b48 |
*-------------------+--------------------+-------------------|
| 8 579 1357 | 345 6 1347 | 2 379 19 |
| 137 2 6 |be38 9 1378 | 5 4 b18 |
| 1357 579 4 | 2 de358 1378 | 379 3789 6 |
*-------------------+--------------------+-------------------|
| 9 4 35 | 1 de35 6 | 8 2 7 |
| 6 8 2 | 7 4 9 | 1 5 3 |
| 1357 57 1357 | a8-35 2 38 | 49 6 49 |
*------------------------------------------------------------*
8r9c4 = [Skyscraper 8c49] - (8=3)r3c5 - 3r67c5 = (5r7c5)&(8r6c5)&(3r5c4) => -35 r9c4 ; stte
4x4 TM:
| 3c4,5b8,9n4 8b5,6n5 8r3,8b2 8r5
-------+------------------------------------------
5N4,5C5| 35r5c4,r7c5 8r5c4|5r6c5
8C5 | 8r6c5 8r3c5
8C9 | 8r3c9 8r5c9
8C4 | 8r9c4 8r1c4 8r5c4
-------+------------------------------------------
| -35r9c4
Alien 5x8-Fish (Mixed Rank 3/1): {8C459 5C5 5N4} \ {8r35 3c4 8b25 5b8 6n5 9n4} => -35 r9c4 (Rank 1)
(Don't ask me to explain the rank regions -- it has so many triplets that I get confused.)
(8)r1c4 ------------- (5)r6c5 = r7c5 - (5)r9c4
|| \ / ||
(8)r9c4 - r3c5 = r6c5 - (8)r9c4
|| / \ ||
(8)r5c4 - r5c9 = r3c9 (8=3)r5c4 ------ (3)r9c4
=> +8r9c4 (because I closed the (discontinuous) loop for symmetry; obviously not necessary)
SpAce wrote:Hidden Text: Show
Would that work?
SpAce wrote:I guess your double-matrix (is it a case of BTM?) is the cleanest way to do it
Cenoman wrote:Only minor comments:
First, an opinion on a point I am not asked to comment: from the four options tried by SpAce, the one I like best is #3. (my reason: it is the closest of the net and the matrix)
Not surprising, I'd rather write the chain (8)r9c4 = [Skyscraper] - r3c5 = r6c5 - (8)r5c4|(5)r6c5 = (3)r5c4&(5)r7c5 => -35 r9c4
and the TMHidden Text: Show
Third,SpAce wrote:I guess your double-matrix (is it a case of BTM?) is the cleanest way to do it
The combined matrix is not a TM, nor a BTM because it is 6x5, not a square matrix (which is the first requirement for all types in Steve K's paper)
SpAce wrote:I counted the first two lines as one : 3r5c4&5r7c5 8r5c4 3r7c5.
I guess that still wouldn't make it a BTM, though its exact definition still eludes me.
8r9c4 SS 8c49
8r3c5 3r3c5
35r67c5 8r6c5
3r5c4&5r7c5 3r7c5 8r6c4
=> -35r9c4