May 1, 2019

Post puzzles for others to solve here.

May 1, 2019

Postby ArkieTech » Wed May 01, 2019 11:04 am

Code: Select all
 *-----------*
 |5..|.3.|..4|
 |..2|1.5|7..|
 |.6.|...|.9.|
 |---+---+---|
 |6..|...|..9|
 |.8.|6.4|.3.|
 |...|...|...|
 |---+---+---|
 |..5|.7.|1..|
 |.7.|...|.2.|
 |...|.1.|...|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: May 1, 2019

Postby Leren » Wed May 01, 2019 11:26 am

Code: Select all
*---------------------------------------------------------------------*
| 5      19     1789   | 2789   3     26789  | 268     168     4      |
| 3489   349    2      | 1      4689  5      | 7       68      368    |
| 13478  6      13478  | 2478   248   278    |d2358    9      c25-138 |
|----------------------+---------------------+------------------------|
| 6      12345  1347   | 23578  258   12378  | 48-25   14578   9      |
| 1279   8      179    | 6      259   4      |a25      3      b1257   |
| 123479 123459 13479  | 235789 2589  123789 | 468-25  145678 b125678 |
|----------------------+---------------------+------------------------|
| 23489  2349   5      | 23489  7     23689  | 1       468     368    |
| 13489  7      134689 | 34589  45689 3689   | 34689-5 2       3568   |
| 23489  2349   34689  | 234589 1     23689  | 34689-5 45678   35678  |
*---------------------------------------------------------------------*

M Ring Type B : (5=2) r5c7 - r56c9 = (2-5) r3c9 = (5) r3c7 Loop => - 138 r3c9, - 25 r46c7, - 5 r89c7; lclste, or can be seen as a

Code: Select all
*---------------------------------------------------------------------*
| 5      19     1789   | 2789   3     26789  |a268    c1-68    4      |
| 3489   349    2      | 1      4689  5      | 7      c68     c368    |
| 13478  6      13478  | 2478   248   278    |a2358    9       25-138 |
|----------------------+---------------------+------------------------|
| 6      12345  1347   | 23578  258   12378  | 48-25   14578   9      |
| 1279   8      179    | 6      259   4      |b25      3      b1257   |
| 123479 123459 13479  | 235789 2589  123789 | 468-25  145678 b125678 |
|----------------------+---------------------+------------------------|
| 23489  2349   5      | 23489  7     23689  | 1       468     368    |
| 13489  7      134689 | 34589  45689 3689   | 34689-5 2       3568   |
| 23489  2349   34689  | 234589 1     23689  | 34689-5 45678   35678  |
*---------------------------------------------------------------------*

Sue de Coq: Base Cells r1c7 {268} r3c7 {2358} Pincer Cells r5c7 {25} + r1c8 {168} r2c8 {68} r2c9 {368} => - 68 r1c8 - 138 r3c9, - 25 r46c7, - 5 r89c7; lclste

Leren
Last edited by Leren on Wed May 01, 2019 11:41 am, edited 1 time in total.
Leren
 
Posts: 5118
Joined: 03 June 2012

Re: May 1, 2019

Postby SpAce » Wed May 01, 2019 11:38 am

Code: Select all
.------------------------.-----------------------.-----------------------------.
| 5       19      1789   | 2789    3      26789  | a268     a68(1)    4        |
| 3489    349     2      | 1       4689   5      |  7       a68       368      |
| 13478   6       13478  | 2478    248    278    | c2358     9       c23(5)8-1 |
:------------------------+-----------------------+-----------------------------:
| 6       12345   1347   | 23578   258    12378  |  2458     14578    9        |
| 1279    8       179    | 6       259    4      | b25       3        1257     |
| 123479  123459  13479  | 235789  2589   123789 |  24568    145678   125678   |
:------------------------+-----------------------+-----------------------------:
| 23489   2349    5      | 23489   7      23689  |  1        468      368      |
| 13489   7       134689 | 34589   45689  3689   |  345689   2        3568     |
| 23489   2349    34689  | 234589  1      23689  |  345689   45678    35678    |
'------------------------'-----------------------'-----------------------------'

ALS-H3-Wing:

(1=682)b3p251 - (2=5)r5c7 - (5)r3c[7=9] => -1 r3c9; lclste

...or a double-kraken:

Code: Select all
.-------------------------.---------------------------.-------------------------------.
| 5      Be19      1789   | e2789      3      e26789  |    268     Cf168       4      |
| 3489     349     2      |  1        d4689    5      |    7         68        368    |
| 13478    6       13478  |  2478      248     278    | Dgz23(5)8    9      Dgz12358  |
:-------------------------+---------------------------+-------------------------------:
| 6       A12345   1347   | a23578    a258    a12378  |   x2458      14578     9      |
| 1279     8       179    |  6       bc2(5)9   4      |    2-5       3        y1257   |
| 123479  B123459  13479  |  235789    2589    123789 |    24568     145678   y125678 |
:-------------------------+---------------------------+-------------------------------:
| 23489    2349    5      |  23489    7        23689  |    1         468       368    |
| 13489    7       134689 |  34589    45689    3689   |    345689    2         3568   |
| 23489    2349    34689  |  234589   1        23689  |    345689    45678     35678  |
'-------------------------'---------------------------'-------------------------------'

Kraken Row (2)r4c24567 & Kraken Cell (259)r5c5

(2-1|5)r4c2 = (51)r61c2 - r1c8 = (15)r3c97
||
(2)r4c456 - (2)r5c5
||          ||
||          (5)r5c5
||          ||         
||          (9)r5c5 - r2c5 = (91)r1c462 - r1c8 = (15)r3c97
||
(2)r4c7 - r56c9 = (25)r3c97

=> -5 r5c7; stte

...or as an AIC for lols:

Code: Select all
.-------------------------.--------------------------.--------------------------------.
| 5      ch19      1789   | h2789     3      h26789  |   268    bi168         4       |
| 3489     349     2      |  1       g4689    5      |   7        68          368     |
| 13478    6       13478  |  2478     248     278    |   2358     9       acj(12)-358 |
:-------------------------+--------------------------+--------------------------------:
| 6      de12345   1347   | e23578   e258    e12378  |  e2458     14578       9       |
| 1279     8       179    |  6       f259     4      | gh25       3        bdi1257    |
| 123479  d123459  13479  |  235789   2589    123789 |   24568    145678   bdi125678  |
:-------------------------+--------------------------+--------------------------------:
| 23489    2349    5      |  23489    7       23689  |   1        468         368     |
| 13489    7       134689 |  34589    45689   3689   |   345689   2           3568    |
| 23489    2349    34689  |  234589   1       23689  |   345689   45678       35678   |
'-------------------------'--------------------------'--------------------------------'

(1|2)r3c9 = (1,2)r1c8,r56c9 - (1|2)r1c2,r3c9 = (15)r46c2&(2)r56c9 - (2)r4c[27=456] - (2=5|9)r5c5 - (59)r5c7,r2c5 = (2)r5c7|(91)r1c462 - (2,1)r56c9,r1c8 = (2|1)r3c9 => -358 r3c9; stte
-SpAce-: Show
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: May 1, 2019

Postby Cenoman » Wed May 01, 2019 3:15 pm

Code: Select all
 +-----------------------------+----------------------------+-----------------------------+
 |  5        19       1789     |  2789     3       26789    | b268      168      4        |
 |  3489     349      2        |  1        4689    5        |  7        68       368      |
 |  13478    6        13478    |  2478     248     278      |da2358     9      ea25-138   |
 +-----------------------------+----------------------------+-----------------------------+
 |  6        12345    1347     |  23578    258     12378    |  2458     14578    9        |
 |  1279     8        179      |  6        259     4        | c25       3        1257     |
 |  123479   123459   13479    |  235789   2589    123789   |  24568    145678   125678   |
 +-----------------------------+----------------------------+-----------------------------+
 |  23489    2349     5        |  23489    7       23689    |  1        468      368      |
 |  13489    7        134689   |  34589    45689   3689     |  345689   2        3568     |
 |  23489    2349     34689    |  234589   1       23689    |  345689   45678    35678    |
 +-----------------------------+----------------------------+-----------------------------+

Almost hidden pair:
(25)r3c79 = (2)r1c7 - (2=5)r5c7 - r3c7 = (5)r3c9 => -138 r3c9; lclste
Last edited by Cenoman on Wed May 01, 2019 8:34 pm, edited 1 time in total.
Cenoman
Cenoman
 
Posts: 2975
Joined: 21 November 2016
Location: France

Re: May 1, 2019

Postby SpAce » Wed May 01, 2019 4:02 pm

Cenoman wrote:Almost hidden pair:
(25)r3c79 = (2)r1c7 - (2=5)r5c7 - r3c7 = (5)r3c9 => -138 r3c9; ste

Nice! (Should be "lclste", though.)

Btw, how would you express my kraken and the horror AIC as matrices? For the kraken I came up with this:

Code: Select all
5r3c7 5r3c9
      1r3c9 1r1c8
      2r3c9       2r56c9
            1r1c2        9r1c2
                         9r1c46 9r2c5 
            1r1c2                     15r46c2
                  2r4c7               2r4c2   2r4c456
5r5c5                           9r5c5         2r5c5

=> -5 r5c7; stte   

Is it sort of ok? How would you improve it? What about the AIC? I have no idea what to do with it.

Added. This is my attempt for the AIC, but I suspect it has problems:

Code: Select all
1r3c9 1r1c8
      1r1c2 9r1c2
      1r1c2        15r46c2
            9r1c46         9r2c5
                           9r5c5 2r5c5   5r5c5
                                         5r5c7 2r5c7   
                   2r4c2         2r4c456       2r4c7
2r3c9                                          2r56c9

=> -358 r3c9; stte

Is the fifth row wrong because it adds two terms?
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: May 1, 2019

Postby Cenoman » Wed May 01, 2019 11:09 pm

SpAce wrote:Nice! (Should be "lclste", though.)

Btw, how would you express my kraken and the horror AIC as matrices? For the kraken I came up with this:


Is it sort of ok? How would you improve it? What about the AIC? I have no idea what to do with it.

Added. This is my attempt for the AIC, but I suspect it has problems:


Is the fifth row wrong because it adds two terms?


Thank you for spotting the lclste finish !

As regards your matrices, I need time to analyse. Comments will come asap.
Cenoman
Cenoman
 
Posts: 2975
Joined: 21 November 2016
Location: France

Re: May 1, 2019

Postby SpAce » Wed May 01, 2019 11:54 pm

Cenoman wrote:As regards your matrices, I need time to analyse. Comments will come asap.

Great! Take your time. If it helps, I think this double-kraken matches with the AIC and is probably easier to decipher:

Code: Select all
(2-1|5)r4c2 = (51)r61c2 - r1c8 = (1)r3c9
||
(2)r4c456 - (2)r5c5
||          ||
||          (5)r5c5 - (5=2)r5c7 - r56c9 = (2)r3c9
||          ||         
||          (9)r5c5 - r2c5 = r1c46 - (9=1)r1c2 - r1c8 = (1)r3c9
||
(2)r4c7 - r56c9 = (2)r3c9

-> (1|2)r3c9 => -358 r3c9

Btw, I think the AIC might actually have other eliminations in its pocket as well, but I'm not sure which ones. It seems kind of loopish, but since it's really a net in disguise, I wouldn't know which loop eliminations are safe (all applicable seem to work but that's not proof of anything). My preliminary attempt to write it as truths and links yielded this (with at least three additional Rank 0 eliminations, I think):

Alien 9-Fish (Mixed Rank 1/0 (*): {2R4 15C2 2C9 1B3 9B2 1N2 5N57} \ {19r1 5r5 9c5 2b56 3n9 46n2}
=> -358 r3c9, -1 r1c3, -2 r6c7, -5 r5c9 (all Rank 0)

(*) set triple: 1r1c2 => Rank 0 along link 1r1 extending to 3n9 (i.e. r3c9), 2b6, 5r5; Rank 1 elsewhere

All Rank 0 PEs: -19 r1c3, -358 r3c9, -34 r4c2, -2349 r6c6, -2 r6c456, -9 r68c5, -2 r6c7, -5 r5c9

All of them happen to be valid eliminations (because 1r1c2 is false), but I'm quite sure our pattern doesn't prove them all (because it's only partly Rank 0). However, are the ones I listed ok? Any easy way to see that, I wonder?
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: May 1, 2019

Postby Cenoman » Thu May 02, 2019 3:44 pm

Space wrote:Btw, how would you express my kraken and the horror AIC as matrices? For the kraken I came up with this:
Code: Select all
Kraken Row (2)r4c24567 & Kraken Cell (259)r5c5                      Matrix
(2-1|5)r4c2 = (51)r61c2 - r1c8 = (15)r3c97                          5r3c7 5r3c9
||                                                                        1r3c9 1r1c8
(2)r4c456 - (2)r5c5                                                       2r3c9       2r56c9
||          ||                                                                  1r1c2        9r1c2
||          (5)r5c5                                                                          9r1c46 9r2c5
||          ||                                                                  1r1c2                     15r46c2
||          (9)r5c5 - r2c5 = (91)r1c462 - r1c8 = (15)r3c97                            2r4c7                2r4c2   2r4c456
||                                                                  5r5c5                           9r5c5           2r5c5

The matrix is fully OK to me.
Side remark 1: note the presence of 1r1c2 twice in column 3. No trouble in a TM (Triangular Matrix) But this prevents to consider it as a PM (Pigeonhole Matrix), since 1r1c2 isn't in a weak link with itself.
I'd have written the first chain in your kraken consistently with the matrix: (2)r4c2 - (15)r46c2 = (1)r1c2- r1c8 = (15)r3c97 :lol:

Space wrote:What about the AIC? I have no idea what to do with it.
... This is my attempt for the AIC, but I suspect it has problems:
Code: Select all
1r3c9 1r1c8
      1r1c2 9r1c2
      1r1c2        15r46c2
            9r1c46         9r2c5
                           9r5c5 2r5c5   5r5c5
                                         5r5c7 2r5c7   
                   2r4c2         2r4c456       2r4c7
2r3c9                                          2r56c9

Is the fifth row wrong because it adds two terms?

...and in a further message,
Space wrote:I think this double-kraken matches with the AIC and is probably easier to decipher:
Code: Select all
(2-1|5)r4c2 = (51)r61c2 - r1c8 = (1)r3c9
||
(2)r4c456 - (2)r5c5
||          ||
||          (5)r5c5 - (5=2)r5c7 - r56c9 = (2)r3c9
||          ||         
||          (9)r5c5 - r2c5 = r1c46 - (9=1)r1c2 - r1c8 = (1)r3c9
||
(2)r4c7 - r56c9 = (2)r3c9

-> (1|2)r3c9 => -358 r3c9

I guess you understand why I have not even tried to decipher your AIC. Full stop: let's avoid any restart of a past tough discussion.
So, before you posted your equivalent double kraken, I tried to decipher your logic from the strong links in your draft matrix. I got this:
Code: Select all
Double kraken cell (259)r5c5 & Row (2)r4c24567                  Triangular matrix
(2)r5c5 - (2)r4c456                                             1r3c9 1r1c8
 ||        ||                                                         1r1c2 9r1c2
 ||       (2)r4c2 - (15)r46c2 = r1c2 - r1c8 = (1)r3c9                 1r1c2        15r46c2
 ||        ||                                                               9r1c46         9r2c5
 ||       (2)r4c7 - r56c9 = (2)r3c9                             2r3c9                            2r56c9
(5)r5c5 - (5=2)r5c7 - r56c9 = (2)r3c9                                                            2r5c7   5r5c7
 ||                                                                                        9r5c5         5r5c5  2r5c5 
(9)r5c5-r2c5=r2c12-(9=1)r1c2-r1c8=(1)r3c9                                           2r4c2        2r4c7         2r4c456


The concern with your draft matrix was, at a first glance, that it was not triangular. The flaw is not fatal. We could be facing a case which requires a BTM (Block Triangular Matrix). I rarely used BTMs. In the present case, as long as there were only two 3-SIS (2=5=9)r5c5 & (2)r4c2=r4c456=r4c7, I suspected a double kraken logic that can always be put into a TM. Fortunately, I found the same double kraken as yours...

Note that my TM has exactly the same lines as yours. I just re-ordered lines and columns.

Edit, from here to the end, demonstrating the eliminations.
Now, there is more to say about it. Noticing (as you already did), that the first column is also a weak inference, some additional eliminations can be anticipated, as for a loop. The weak link in the first column allow it to be any internal column in the matrix. Exchanging the first and second column is trivial. But from the third column, we enter into trouble, because of the double presence of 1r1c2 in the second. I failed to imagine any row-column re-ordering that could keep 1r1c8 above 1r1c2 (and meeting all TM requirements)
As mentioned above, 1r1c2 present twice in column 2 prevents the matrix to be also a Pigeonhole Matrix. Were it a PM, then so good !
In the special case of a PM, when the first column is also a weak inference set, then all columns are proven to be strong inference sets. Steve K. called this a "symmetric pigeonhole matrix", without using the expression "rank 0 logic" though, but it would be appropriate.
I have tried to imagine an arrangement cancelling the presence of 1r1c2 in two rows by concatenating rows 2&3 and columns 3&4, but it doesn't work better.
Hidden Text: Show
Code: Select all
1r3c9    1r1c8
         1r1c2 (9r1c2 & 15r46c2)
                   9r1c46        9r2c5
2r3c9                                    2r56c9
                                         2r5c7   5r5c7   
                                 9r5c5           5r5c5    2r5c5 
                    2r4c2                2r4c7           2r4c456

This arrangement doesn't improve the issue, since the third column is now the troublemaker.

So, keeping the above matrix, here is the best result I could get:
Code: Select all
1r3c9    1r1c8
         1r1c2  9r1c2
         1r1c2          15r46c2
                9r1c46          9r2c5
2r3c9                                   2r56c9
                                        2r5c7   5r5c7
                                9r5c5           5r5c5    2r5c5
                         2r4c2          2r4c7           2r4c456

-358r3c9 -1r1c3                         -2r6c7  -5r5c9

Bottom line: eliminations that are demonstrated by exchanging c1 with c2, c6, c7 resp. Exchanging c1 vs c3, c4, c5 can't be carried out without bringing 1r1c2 as an element of the upper diagonal. Exchanging c1 vs c8 can't give a valid TM nor PM.
Note: exchanging c1 vs c2, c6, c7 while getting a valid TM has been checked comprehensively. Matrices here.
Hidden Text: Show
Code: Select all
Original Triangular Matrix
1r3c9 1r1c8
      1r1c2 9r1c2
      1r1c2        15r46c2
            9r1c46         9r2c5
2r3c9                            2r56c9
                                 2r5c7   5r5c7
                           9r5c5         5r5c5  2r5c5
                    2r4c2        2r4c7         2r4c456
=> -358r3c9

c1 vs c2
1r1c8 1r3c9
1r1c2       9r1c2
1r1c2              15r46c2
            9r1c46         9r2c5
      2r3c9                      2r56c9
                                 2r5c7   5r5c7
                           9r5c5         5r5c5  2r5c5
                    2r4c2        2r4c7         2r4c456
=> -1r1c3

c1 vs c6
2r56c9 2r3c9
       1r3c9 1r1c8
             1r1c2 9r1c2
             1r1c2        15r46c2
                   9r1c46         9r2c5
2r5c7                                   5r5c7   
                                  9r5c5 5r5c5  2r5c5
2r4c7                      2r4c2              2r4c456
=> -2r6c7

c1 vs c7
5r5c7  2r5c7
       2r56c9 2r3c9
              1r3c9 1r1c8
                    1r1c2 9r1c2
                    1r1c2        15r46c2
                          9r1c46         9r2c5
5r5c5                                    9r5c5  2r5c5
       2r4c7                      2r4c2        2r4c456
=> -5r5c9


The demonstrated eliminations are the same as those from your Alien 9-Fish.

That was the expected conclusion, wasn't it ?
Last edited by Cenoman on Mon May 06, 2019 10:55 pm, edited 1 time in total.
Cenoman
Cenoman
 
Posts: 2975
Joined: 21 November 2016
Location: France

Re: May 1, 2019

Postby SpAce » Fri May 03, 2019 2:13 pm

Many thanks for your comments, Cenoman! That was very educational! I've been certain for a while now that matrices are a good tool, but unfortunately there are very few resources available to learn them. I sort of understand the principles, but so far I haven't had a clear idea about the differences between the matrix types or how to write more complex cases. A lot of it is still unclear, but this was definitely a step forward! I really appreciate it!

Cenoman wrote:The [kraken] matrix is fully OK to me.

Somewhat surprising, but good to hear!

Side remark 1: note the presence of 1r1c2 twice in column 3.

I noticed and wondered about that but didn't really know its significance or how to circumvent it. You answered both of those questions! First this:

No trouble in a TM (Triangular Matrix) But this prevents to consider it as a PM (Pigeonhole Matrix), since 1r1c2 isn't in a weak link with itself.

I wouldn't have known what matrix type to call it, but I guess it's a TM, then? This is the first time I think I understood the significant differences between TM and PM, so thanks for that! Sure, it's all said here, but it doesn't really explain why the differences matter. I've also needed to rewrite SteveK's examples to be able to read them.

I'd have written the first chain in your kraken consistently with the matrix: (2)r4c2 - (15)r46c2 = (1)r1c2- r1c8 = (15)r3c97

Yes, that's better. I just wrote it the way I saw it, but should have cleaned it up a bit.

I guess you understand why I have not even tried to decipher your AIC.

Yes, I understand that perfectly. It was more fun to write than to read :) I kind of enjoy those kinds of exercises because it takes a bit of creativity to come up with a valid AIC, even if the end result is horrible. In this case it also opened up some new views and questions. Without it I wouldn't have noticed the partial Rank 0 potential. (I first attempted to translate the original kraken into an AIC but it was too difficult to synchronize the split chains, so I ended up with a different elimination -- first it was just -5r3c9 with the endpoints 5r3c7 and (1|2)r3c9 but then I noticed that the endpoint 5r3c7 was unnecessary, which resulted in the more interesting variant that spawned these questions.)

The concern with your draft [AIC] matrix was, at a first glance, that it was not triangular.

That was my concern too, though again, I didn't really understand the significance. I just suspected it was a problem. So, I guess it means my (AIC) matrix is neither PM (because of the double column entry of 1r1c2) nor TM (because it's not triangular)?

The flaw is not fatal. We could be facing a case which requires a BTM (Block Triangular Matrix).

So, is my matrix a valid Block Triangular Matrix if left as written? I don't really understand what it means in practice, as SteveK's explanation (and example) is not exactly easy. (The same is even more true about the Mixed BM which I haven't even tried to understand yet.) I guess this is the significant bit about BMs:

SteveK wrote:If there are two top entries in a single row, then they each form a block. Each of these blocks must form triangular matrices.

Does my fifth row have "two top entries" and thus two "blocks"? How do we see and use those if we don't convert it into a TM like you did (or if it's not possible)?

Note that my TM has exactly the same lines as yours. I just re-ordered lines and columns.

Nice! That part is still difficult for me. It felt more natural to have the result on the last line to be able to read the progression from top to bottom, so I didn't even consider your ordering. I think I see now why it works, though: since in a TM the top node of a column has a weak link with everything below (and vice versa, of course) we can also read it from bottom to top when necessary? I guess that can be done in a PM, too, except with more degrees of freedom since every entry in a column is weakly linked with each other?

Now, there is more to say about it. Noticing (as you already did), that the first column is also a weak inference, some additional eliminations can be anticipated, as for a loop.
...
The demonstrated eliminations are the same as those from your Alien 9-Fish.

That was the expected conclusion, wasn't it ?

Well, I'm speechless! I need to analyze this much more and see if I can understand it, but at least I'm happy that my conclusions based on the "Alien Fish" view seem to have been correct. I wasn't at all certain about that either because seeing the boundaries of the Rank 0 region was more of a case by case analysis (the set triplet 1r1c2 both on and off) than anything I could see directly (even with Allan Barker's triplet rules). But, if it can be seen with such matrix transformations, then it gives hope that there may be ways to see it more easily and with more certainty. Thanks for that too! In general, it seems that matrices would be a good tool to visualize truths and links since they have a pretty straight-forward mapping.

Added: I still haven't worked through your matrix transformations, but just one quick question about the bottom line:

Code: Select all
-358r3c9 -1r1c3                 -9r6c5  -2r6c7  -5r5c9

Are you saying that -9r6c5 is a proven elimination too? That wasn't in my list, and I still don't see how you'd get that (and if you do, then why not -9r8c5 as well?).
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: May 1, 2019

Postby Cenoman » Fri May 03, 2019 11:00 pm

Are you saying that -9r6c5 is a proven elimination too? That wasn't in my list, and I still don't see how you'd get that (and if you do, then why not -9r8c5 as well?).


I have to check that. I'm not at home and I have neither the computer where I stored the matrices, nor the draft papers. I'm afraid I have put 9r1c46 as upper diagonal element, which would not be correct. I check as soon as I'm back home (next Monday). I'll post then the complete set of matrices.

Edit:Check done. 9r6c5 is NOT a proven elimination. Previous post edited. Matrices issued inside.
Last edited by Cenoman on Mon May 06, 2019 11:00 pm, edited 1 time in total.
Cenoman
Cenoman
 
Posts: 2975
Joined: 21 November 2016
Location: France

Re: May 1, 2019

Postby SpAce » Fri May 03, 2019 11:55 pm

Cenoman wrote:I have to check that. I'm not at home and I have neither the computer where I stored the matrices, nor the draft papers. I'm afraid I have put 9r1c46 as upper diagonal element, which would not be correct. I check as soon as I'm back home (next Monday). I'll post then the complete set of matrices.

Excellent! In the mean time I'll try to get a better understanding of this stuff. About the BTM I was wondering if it simply means that the matrix can be split into two TMs, like this:

My original AIC matrix with the two cases marked as 'a' and 'b':

Code: Select all
1r3c9 1r1c8
      1r1c2 9r1c2
      1r1c2        15r46c2
            9r1c46         9r2c5
                           9r5c5 2r5c5:a  5r5c5:b
                                          5r5c7   2r5c7   
                   2r4c2         2r4c456          2r4c7
2r3c9                                             2r56c9


TM a:

Code: Select all
1r3c9 1r1c8
      1r1c2 9r1c2
      1r1c2        15r46c2
            9r1c46         9r2c5
                           9r5c5 2r5c5:a
                   2r4c2         2r4c456 2r4c7
2r3c9                                    2r56c9


TM b:

Code: Select all
1r3c9 1r1c8
      1r1c2 9r1c2
            9r1c46 9r2c5
                   9r5c5 5r5c5:b
                         5r5c7   2r5c7   
2r3c9                            2r56c9


Is that what BTM means? As you neatly demonstrated, with this example it's simpler to just transform it into a single TM, but I guess it's not possible in more complex cases.

A bit related question. Is this a valid TM alternative:

Code: Select all
1r3c9 1r1c8
      1r1c2 9r1c2
      1r1c2        15r46c2
2r3c9                      2r56c9
                           2r5c7  5r5c7
                   2r4c2   2r4c7        2r4c456
            9r1c46                              9r2c5
                                  5r5c5 2r5c5   9r5c5

Or is it significant that the two 3-SIS are at the bottom like in yours? (I think yours is more readable anyway. I'm just wondering about the correctness.)

Don't sweat on answering until you have time! I'm just thinking aloud while I try to process these things.

---

Added. I remembered you provided some neat matrices here. At the time I tried to reproduce them but ended up with more lines and probably not valid TMs. Now it seems easier, so I guess you've managed to teach me something! To practice some more I combined eleven's and Steve's solutions:

Code: Select all
.-----------------.----------------------.------------------.
| 57    6    57   | ac34(8)  1      348  | 39   389    2    |
| 4     3    8    |   9      7      2    | 6    1      5    |
| 2     1    9    |   6      3-8    5    | 347  378   a4(8) |
:-----------------+----------------------+------------------:
| 8     579  1357 |  c345    6      1347 | 2    379    19   |
| 137   2    6    | ab38     9      1378 | 5    4     a18   |
| 1357  579  4    |   2     c35(8)  1378 | 379  3789   6    |
:-----------------+----------------------+------------------:
| 9     4    35   |   1      35     6    | 8    2      7    |
| 6     8    2    |   7      4      9    | 1    5      3    |
| 1357  57   1357 |  b35#8   2      38   | 49   6      49   |
'-----------------'----------------------'------------------'

[Skyscraper 8c49] = (8,3)r95c4 - (3=[XY-Wing 84-45-58])r14c4,r6c5 => -8 r3c5; stte

Interestingly, it reduced to a pretty small "alien fish" (originally 8c4 being both a set and a link, thus canceling out):

Alien 5-Fish (Mixed Rank 3/2 (*)) {8C9 145N4 6N5} \ {8r35 8c5 8b2 35b5 34c4} => -8 r3c5 (Rank 2)

(*) link triplet (3c4b5) => Rank 2 on sets 45N4 extending to link 8r3

...with a corresponding matrix:

Code: Select all
   | 8r3c5b2 8r5   3c4b5 4c4   5b5
---+--------------------------------
8C9| 8r3c9   8r5c9
5N4|         8r5c4 3r5c4
1N4| 8r1c4         3r1c4 4r1c4
4N4|               3r4c4 4r4c4 5r4c4
6N5| 8r6c5         3r6c5       5r6c5

After I got that on my own, I noticed it was the same as your matrix for eleven's solution minus the first line. Didn't really expect that result, as I thought it would rather be more complex. Thus it seems that matrices are a good way to see the essence of patterns.
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: May 1, 2019

Postby SpAce » Sun May 05, 2019 12:49 am

Hi Leren, while trying my hand with the matrix representations I noticed something interesting with your Sue de Coq.

Leren wrote:
Code: Select all
*---------------------------------------------------------------------*
| 5      19     1789   | 2789   3     26789  |a268    c1-68    4      |
| 3489   349    2      | 1      4689  5      | 7      c68     c368    |
| 13478  6      13478  | 2478   248   278    |a2358    9       25-138 |
|----------------------+---------------------+------------------------|
| 6      12345  1347   | 23578  258   12378  | 48-25   14578   9      |
| 1279   8      179    | 6      259   4      |b25      3      b1257   |
| 123479 123459 13479  | 235789 2589  123789 | 468-25  145678 b125678 |
|----------------------+---------------------+------------------------|
| 23489  2349   5      | 23489  7     23689  | 1       468     368    |
| 13489  7      134689 | 34589  45689 3689   | 34689-5 2       3568   |
| 23489  2349   34689  | 234589 1     23689  | 34689-5 45678   35678  |
*---------------------------------------------------------------------*

Sue de Coq: Base Cells r1c7 {268} r3c7 {2358} Pincer Cells r5c7 {25} + r1c8 {168} r2c8 {68} r2c9 {368} => - 68 r1c8 - 138 r3c9, - 25 r46c7, - 5 r89c7; lclste

At first I thought the r1c8 eliminations were wrong (as a direct result) because they seemed kind of cannibalistic or a combined result from a different SDC (without the r1c8 in the pattern). I almost missed the fact that 1r1c8 gets directly locked as a single, so I guess they're ok after all. It might be clearer (and stronger) to express it as +1r1c8, though (because otherwise you could also list 1r1 and 1c8 eliminations). There's also an option to use a simpler SDC without that cell, which I would probably choose.
--
Cenoman, here's my attempt to write the two available SDCs as matrices. They look pretty weird to me, but are those shapes ok as symmetric PMs (obviously not TMs, but we don't even want that since we're dealing with Rank 0, right)? The latter (corresponding with Leren's SDC) has another problem, though, related to the observation above. How do we deal with the locked 1r1c8?

First, the simpler variant (without r1c8); as a loop, as truths and links, and as a matrix:

(5=2)r5c7 - (2=368'5)b3p1567 - loop => -25 r46c7, -5 r89c7, -68 r1c8, -38 r3c9

Alien 5-Fish (Rank 0): {135N7 2N89} \ {25c7 368b3} => the same

Code: Select all
   | 5c7   2c7   6b3   8b3   3b3
---+------------------------------
5N7| 5r5c7 2r5c7
1N7|       2r1c7 6r1c7 8r1c7
2N8|             6r2c8 8r2c8
2N9|             6r2c9 8r2c9 3r2c9
3N7| 5r3c7 2r3c7       8r3c7 3r3c7
---+------------------------------
   | -5c7  -2c7  -6b3  -8b3  -3b3

Is that ok?

Then the other one (Leren's SDC, including r1c8):

(5=2)r5c7 - (2=1368'5)b3p12567 - loop => -25 r46c7, -5 r89c7, +1r1c8, -38 r3c9

Alien 6-Fish (Rank 0): {135N7 1N8 2N89} \ {25c7 1368b3} => -25 r46c7, -5 r89c7, -138 r3c9

Code: Select all
   | 5c7   2c7   6b3   8b3   3b3    1b3
---+--------------------------------------
5N7| 5r5c7 2r5c7
1N7|       2r1c7 6r1c7 8r1c7
2N8|             6r2c8 8r2c8
2N9|             6r2c9 8r2c9 3r2c9
1N8|             6r1c8 8r1c8        1r1c8
3N7| 5r3c7 2r3c7       8r3c7 3r3c7 (1r3c7)
---+--------------------------------------
   | -5c7  -2c7  -6b3  -8b3  -3b3   -1b3

As you can see, I didn't know what to do with the 1r1c8 so I introduced a ghost candidate in r3c7. That doesn't seem right at all. How would you solve the problem? I guess the simplest (and best) way is to revert to the simpler matrix without that extra cell. Using the Alien Fish view it's easy to cancel the extra set (1N8) by using 1n8 also as a link (instead of 1b3):

{135N7 1N8 2N89} \ {25c7 1n8 368b3} <=> {135N7 2N89} \ {25c7 368b3}

Added. After a bit of rethinking, I guess it's not that complicated after all. Why not simply accept it as a single value column proving a single? Since it's a symmetric PM we know that every column is a SIS -- so why not a SIS of size one? Then we can apply all four cover sets in parallel. Thus simply:

Siamese Alien 6-Fish (Rank 0): {135N7 1N8 2N89} \ {25c7 368b3 1n8|1r1|1c8|1b3} => -25 r46c7, -5 r89c7, -138 r3c9, -68 r1c8, -1 r1c2,r46c8

Code: Select all
   |                                1n8|
   |                                1r1|
   |                                1c8|
   | 5c7   2c7   6b3   8b3   3b3    1b3
---+--------------------------------------
5N7| 5r5c7 2r5c7
1N7|       2r1c7 6r1c7 8r1c7
2N8|             6r2c8 8r2c8
2N9|             6r2c9 8r2c9 3r2c9
1N8|             6r1c8 8r1c8        1r1c8
3N7| 5r3c7 2r3c7       8r3c7 3r3c7
---+--------------------------------------
   | -5c7  -2c7  -6b3  -8b3  -3b3  +1r1c8

(Still I think the simpler variant is better.)
--
Added. Here's another unrelated exercise I did for this puzzle.

Code: Select all
.-------------------.------------------.--------------.
| 6     58     1    | 58   9      3    | 4   7    2   |
| 457   457    9    | 6    2     (47)5 | 1   8    3   |
| 247   3      278  | 1   (8)-4  (47)  | 69  69   5   |
:-------------------+------------------+--------------:
| 2459  4589   258  | 7    6     [245] | 3   1    48  |
| 457   45678  5678 | 9    3      1    | 2   45   468 |
| 3     1      256  | 458  458    245  | 7   459  469 |
:-------------------+------------------+--------------:
| 8     2      3    | 45   7      9    | 56  46   1   |
| 157   567    567  | 3    1(4)5  8    | 59  2    49  |
| 159   59     4    | 2    15     6    | 8   3    7   |
'-------------------'------------------'--------------'

Kraken Cell (245)r4c6

(2)r4c6 - r6c6 = (26-9)r6c39 = (94)r8c95
||
(48)r4c69 - (4|8)r4c2 = (59,8)r491c2 - r3c3 = (8)r3c5
||
(5)r4c6 - (5=74)r23c6

=> -4 r3c5; stte

Alien 12-Fish (Rank 2):
{8R3 26R6 4R8 9C9 19N2 23N6 4N269} \ {48r4 59c2 4c5 25c6 8b1 47b2 3n5 6n3 68n9} => -4 r3c5

Code: Select all
     |  3n5
     | 47b2
     |  4c5    8b1   5c2   9c2    48r4   5c6   2c6   6n3   6n9   8n9
-----+----------------------------------------------------------------
 8R3 |  8r3c5  8r3c3
 1N2 |         8r1c2 5r1c2
 9N2 |               5r9c2 9r9c2
 4N29|               5r4c2 9r4c2 48r4c29
23N6 | 47r23c6                           5r2c6
 4N6 |                            4r4c6  5r4c6 2r4c6
 2R6 |                                         2r6c6 2r6c3
 6R6 |                                               6r6c3 6r6c9
 9C9 |                                                     9r6c9 9r8c9
 4R8 |  4r8c5                                                    4r8c9
-----+----------------------------------------------------------------
     | -4r3c5

Is that an ok TM? Presuming so, I'd next like to break down the combo sets. I (think I) can do it for 47r23c6:

Code: Select all
     |  3n5
     |  4b2
     |  4c5    8b1   5c2   9c2    48r4   7b2   5c6   2c6   6n3   6n9   8n9
-----+----------------------------------------------------------------------
 8R3 |  8r3c5  8r3c3
 1N2 |         8r1c2 5r1c2
 9N2 |               5r9c2 9r9c2
 4N29|               5r4c2 9r4c2 48r4c29
 3N6 |  4r3c6                            7r3c6
 2N6 |  4r2c6                            7r2c6 5r2c6
 4N6 |                            4r4c6        5r4c6 2r4c6
 2R6 |                                               2r6c6 2r6c3
 6R6 |                                                     6r6c3 6r6c9
 9C9 |                                                           9r6c9 9r8c9
 4R8 |  4r8c5                                                          4r8c9
-----+----------------------------------------------------------------------
     | -4r3c5   

...but I can see no way to maintain the TM shape if I try to do it for the other:

Code: Select all
     |  3n5
     |  4b2
     |  4c5    8b1   5c2   9c2   8r4   4r4   7b2   5c6   2c6   6n3   6n9   8n9
-----+--------------------------------------------------------------------------
 8R3 |  8r3c5  8r3c3
 1N2 |         8r1c2 5r1c2
 9N2 |               5r9c2 9r9c2
 4N2 |               5r4c2 9r4c2 8r4c2 4r4c2
 4N9 |                           8r4c9 4r4c9
 3N6 |  4r3c6                                7r3c6
 2N6 |  4r2c6                                7r2c6 5r2c6
 4N6 |                                 4r4c6       5r4c6 2r4c6
 2R6 |                                                   2r6c6 2r6c3
 6R6 |                                                         6r6c3 6r6c9
 9C9 |                                                               9r6c9 9r8c9
 4R8 |  4r8c5                                                              4r8c9
-----+--------------------------------------------------------------------------
     | -4r3c5   

Is that thus a BTM? Can you see any other way to do it?
--
Yet another exercise relating to this.

Code: Select all
.-------------------.-----------------.------------------.
| 1     9      4    | 8    3    5     | 2     6      7   |
| 58    7      58   | 2    9    6     | 1     4      3   |
| 3     6      2    | 1    4    7     | 59    8      59  |
:-------------------+-----------------+------------------:
| 4     1235  *3(9) | 7    6   *23(9) | 8     135-9  5-9 |
| 2689  1235   68   | 345  25   23489 | 7     1359   46  |
| 689   35     7    | 345  1    3489  | 46    359    2   |
:-------------------+-----------------+------------------:
| 56    4      56   | 9    7    1     | 3     2      8   |
| 7    *23     1    | 345  8   *234   | 4569  59     46  |
| 29    8     *39   | 6    25   234   | 45    7      1   |
'-------------------'-----------------'------------------'

First, using Clement's original sets:

Alien 4-Fish (Mixed Rank 1/0 (*)) {2R8 3B7 4N36} \ {39r4 3c3 2c6 8n2} => -9 r4c89 (Rank 0)
(*) Link triplet 3r4c3 => Rank 0 in set 4N3 extending to link 9r4

Code: Select all
   |         3c3
   |  9r4    3r4   8n2   2c6
---+--------------------------
4N3|  9r4c3  3r4c3
3B7|         3r9c3 3r8c2
2R8|               2r8c2 2r8c6
4N6|  9r4c6  3r4c6       2r4c6
---+--------------------------
   | -9r4c89

I guess that's a valid TM. What about this slightly different view of the same:

Alien 5-Fish (Mixed Rank 1/0 (*)) {2R8 39C3 3B7 4N6} \ {39r4 2c6 8n2 9n3} => -9 r4c89 (Rank 0)
(*) Set triplet 3r9c3 => Rank 0 along link 9n3 extending to 9r4

Code: Select all
       |  9r4    9n3   8n2   3r4   2c6
-------+--------------------------------
9C3    |  9r4c3  9r9c3
3C3,3B7|         3r9c3 3r8c2&3r4c3
2R8    |               2r8c2       2r8c6
4N6    |  9r4c6              3r4c6 2r4c6
-------+--------------------------------
       | -9r4c89

Would that work, or any cleaner way to do it (with those sets)? As written it looks like a 4x5 matrix (which shouldn't happen) but columns 3 and 4 are just separated for clarity and count as one, so it's still 4x4.
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: May 1, 2019

Postby Cenoman » Mon May 06, 2019 11:11 pm

Hi SpAce,
I was preparing to answer your question
SpAce wrote:Are you saying that -9r6c5 is a proven elimination too?

... and I find a lot of further questions !

To the above question, the answer is definitely No. I have edited my previous posts and confirmed my first conclusion (same eliminations as the alien-fish).

Now, you propose to split your original AIC matrix into two TMs, in order to demonstrate that it is a BTM
Hidden Text: Show
Code: Select all
TM a:
1r3c9 1r1c8
      1r1c2 9r1c2
      1r1c2        15r46c2
            9r1c46         9r2c5
                           9r5c5 2r5c5:a
                   2r4c2         2r4c456 2r4c7
2r3c9                                    2r56c9

TM b:
1r3c9 1r1c8
      1r1c2 9r1c2
            9r1c46 9r2c5
                   9r5c5 5r5c5:b
                         5r5c7   2r5c7   
2r3c9                            2r56c9

SpAce wrote:Is that what BTM means? As you neatly demonstrated, with this example it's simpler to just transform it into a single TM, but I guess it's not possible in more complex cases.

I have no answer to this question. The lack of experience in BTMs makes me very careful. I have just a concern with your TM a and TM b.
They are triangular, for sure, and row 5 in TM a is in a OR with row 4 in TM b, but I am troubled by those rows:
9r5c5 2r5c5 (TM a) is not a SIS in the puzzle pencilmarks, nor 9r5c5 5r5c5 (TM b). Then, in Steve K's example it seems that every line in the split matrices is a full puzzle SIS. Such a requirement is not written explicitly though. So, your question remain opened.

SpAce wrote:A bit related question. Is this a valid TM alternative:
Hidden Text: Show
Code: Select all
1r3c9 1r1c8
      1r1c2 9r1c2
      1r1c2        15r46c2
2r3c9                      2r56c9
                           2r5c7  5r5c7
                   2r4c2   2r4c7        2r4c456
            9r1c46                              9r2c5
                                  5r5c5 2r5c5   9r5c5

Or is it significant that the two 3-SIS are at the bottom like in yours? (I think yours is more readable anyway. I'm just wondering about the correctness.)


Yes, this a valid TM. The 3-SIS are not required to be at the bottom (and you could imagine other permutations of rows, but keep always 1r1c8 above 1r1c2).

As to your proposal for December 11,2018 , nice 5*5 matrix !
Hidden Text: Show
Code: Select all
   | 8r3c5b2 8r5   3c4b5 4c4   5b5
---+--------------------------------
8C9| 8r3c9   8r5c9
5N4|         8r5c4 3r5c4
1N4| 8r1c4         3r1c4 4r1c4
4N4|               3r4c4 4r4c4 5r4c4
6N5| 8r6c5         3r6c5       5r6c5

Why not try something more compact ?
Code: Select all
    | 8r3c5b2 8r5   34c4b5   5b5
----+--------------------------------
8C9 | 8r3c9   8r5c9
5N4 |         8r5c4  3r5c4
14N4| 8r1c4         34r14c4 5r4c4     
6N5 | 8r6c5          3r6c5   5r6c5


Puzzle of the day.
SpAce wrote:here's my attempt to write the two available SDCs as matrices. Is that ok?
Hidden Text: Show
Code: Select all
   | 5c7   2c7   6b3   8b3   3b3
---+------------------------------
5N7| 5r5c7 2r5c7
1N7|       2r1c7 6r1c7 8r1c7
2N8|             6r2c8 8r2c8
2N9|             6r2c9 8r2c9 3r2c9
3N7| 5r3c7 2r3c7       8r3c7 3r3c7
---+------------------------------
   | -5c7  -2c7  -6b3  -8b3  -3b3

OK for this PM

I find it difficult to accept to derogate from the rule of filling matrices with SIS in rows and WIS in columns. So, including r1c8 in the SDC needs some contortions such as the ghost candidate or the trivial SIS size one. If there were a clear benefit, maybe. With this example I am not convinced.

Next exercise
SpAce wrote:
Hidden Text: Show
Code: Select all
Kraken Cell (245)r4c6

(2)r4c6 - r6c6 = (26-9)r6c39 = (94)r8c95
||
(48)r4c69 - (4|8)r4c2 = (59,8)r491c2 - r3c3 = (8)r3c5
||
(5)r4c6 - (5=74)r23c6

=> -4 r3c5; stte

     |  3n5
     | 47b2
     |  4c5    8b1   5c2   9c2    48r4   5c6   2c6   6n3   6n9   8n9
-----+----------------------------------------------------------------
 8R3 |  8r3c5  8r3c3
 1N2 |         8r1c2 5r1c2
 9N2 |               5r9c2 9r9c2
 4N29|               5r4c2 9r4c2 48r4c29
23N6 | 47r23c6                           5r2c6
 4N6 |                            4r4c6  5r4c6 2r4c6
 2R6 |                                         2r6c6 2r6c3
 6R6 |                                               6r6c3 6r6c9
 9C9 |                                                     9r6c9 9r8c9
 4R8 |  4r8c5                                                    4r8c9
-----+----------------------------------------------------------------
     | -4r3c5

Is that an ok TM?

Yes, valid TM
SpAce wrote:Presuming so, I'd next like to break down the combo sets. I (think I) can do it for 47r23c6:
...but I can see no way to maintain the TM shape if I try to do it for the other:
Hidden Text: Show
Code: Select all
     |  3n5
     |  4b2
     |  4c5    8b1   5c2   9c2   8r4   4r4   7b2   5c6   2c6   6n3   6n9   8n9
-----+--------------------------------------------------------------------------
 8R3 |  8r3c5  8r3c3
 1N2 |         8r1c2 5r1c2
 9N2 |               5r9c2 9r9c2
 4N2 |               5r4c2 9r4c2 8r4c2 4r4c2
 4N9 |                           8r4c9 4r4c9
 3N6 |  4r3c6                                7r3c6
 2N6 |  4r2c6                                7r2c6 5r2c6
 4N6 |                                 4r4c6       5r4c6 2r4c6
 2R6 |                                                   2r6c6 2r6c3
 6R6 |                                                         6r6c3 6r6c9
 9C9 |                                                               9r6c9 9r8c9
 4R8 |  4r8c5                                                              4r8c9
-----+--------------------------------------------------------------------------
     | -4r3c5

Is that thus a BTM? Can you see any other way to do it?

I don't know... Didn't try another way, since this matrix is a PM (as well as your first version)
To check if a matrix is a PM, just check the weak links in columns containing > 2 candidates (here column 3 and 6). Column 1 is out of the check.

Puzzle May 5, 2019
Hidden Text: Show
Code: Select all
   |         3c3
   |  9r4    3r4   8n2   2c6
---+--------------------------
4N3|  9r4c3  3r4c3
3B7|         3r9c3 3r8c2
2R8|               2r8c2 2r8c6
4N6|  9r4c6  3r4c6       2r4c6
---+--------------------------
   | -9r4c89

SpAce wrote:I guess that's a valid TM.

Agreed
SpAce wrote:What about this slightly different view of the same:
Hidden Text: Show
Code: Select all
       |  9r4    9n3   8n2   3r4   2c6
-------+--------------------------------
9C3    |  9r4c3  9r9c3
3C3,3B7|         3r9c3 3r8c2&3r4c3
2R8    |               2r8c2       2r8c6
4N6    |  9r4c6              3r4c6 2r4c6
-------+--------------------------------
       | -9r4c89

Would that work, or any cleaner way to do it (with those sets)?


I tried something similar in the first example (May 1,2019) without benefit. Note here that the second column in your first version prevent the matrix from being a PM. It is the same with your modified version (third column, consider that 2r8c2 and 3r4c6 are in the same column). It is valid, but I can't see any benefit: same size of matrix, same eliminations and clarity not improved.

Now, you can take your own way to write matrices. They are a nice tool to present complex patterns, but they have quite no heuristic capacity.
Last edited by Cenoman on Tue May 07, 2019 7:54 pm, edited 1 time in total.
Cenoman
Cenoman
 
Posts: 2975
Joined: 21 November 2016
Location: France

Re: May 1, 2019

Postby SpAce » Tue May 07, 2019 4:46 pm

Cenoman wrote:I was preparing to answer your question
SpAce wrote:Are you saying that -9r6c5 is a proven elimination too?

... and I find a lot of further questions !

Yes, sorry about that, and thanks a lot for taking the time to answer them anyway! I tend to get carried away when I'm trying to learn a new skill, especially if there's a good teacher around! This is kind of like learning to write AICs from scratch -- the basic idea is simple, but anything deviating from trivial examples spawns new questions.

To the above question, the answer is definitely No. I have edited my previous posts and confirmed my first conclusion (same eliminations as the alien-fish).

Thanks for confirming that! The opposite result would have been quite confusing.

Now, you propose to split your original AIC matrix into two TMs, in order to demonstrate that it is a BTM
...
I have no answer to this question. The lack of experience in BTMs makes me very careful. I have just a concern with your TM a and TM b.
They are triangular, for sure, and row 5 in TM a is in a OR with row 4 in TM b, but I am troubled by those rows:
9r5c5 2r5c5 (TM a) is not a SIS in the puzzle pencilmarks, nor 9r5c5 5r5c5 (TM b). Then, in Steve K's example it seems that every line in the split matrices is a full puzzle SIS. Such a requirement is not written explicitly though. So, your question remain opened.

Ok, thanks for that too! Let's keep it open then. Too bad SteveK's BTM example is of limited help. Perhaps there are other examples in some of his solutions, but I haven't digged into those. Here's how I see the provided one (now that I translated it into something I think I understand):

Code: Select all
SteveK's BTM example:

   |  2r7         1r6         6b5               1r3    *d*
   |  7n4   5n8   1b5   1c2   6n6   6c2   1r7   3n6    4n8     4n9   7c3  2n6
---+---------------------------------------------------------------------------
2C8|  2r7c8 2r5c8
6N6|              1r6c6       6r6c6
1R7|  1r7c4       1r7c6 1r7c2
1R5|        1r5c8 1r5c4 1r5c2
6R5|        6r5c8             6r5c4 6r5c2
*D*|                                6r9c2 1r7c2
1C6|                          1r6c6       1r7c6 1r3c6
1C8|        1r5c8                               1r3c8  1r4c8
6B6|                                                   6r45c8 6r4c9
7R4|                                                   7r4c8  7r4c9 7r4c3
7R2|                                                                7r2c3 7r2c6
2C6|  2r7c6                                     2r3c6                     2r2c6
---+---------------------------------------------------------------------------
   | -2r7c4

*D* and *d* refer to the derived strong and weak sets used in Steve's logic.

As far as I see, the only real instruction for interpreting that is this:

SteveK wrote:Note that (1)r6c6 reverts cleanly back to matrix column 1 with a 3x3 Triangular matrix, whilst (6) r6c6 leaves in its wake a 9x9 Triangular matrix.

I take it means that we try both cases of row 2 (6N6) and end up with these two strongly linked TMs:

Code: Select all
Case 1r6c6 (3x3 TM):

   |  2r7   5n8   1c2   
---+-------------------
2C8|  2r7c8 2r5c8
1R5|        1r5c8 1r5c2
1R7|  1r7c4       1r7c2
---+-------------------
   | -2r7c4

Code: Select all
Case 6r6c6 (9x9 TM):

   |  2r7                     1r3    *d*
   |  7c4   5n8   6c2   1r7   3n6    4n8     4n9   7c3  2n6
---+---------------------------------------------------------
2C8|  2r7c8 2r5c8
6R5|        6r5c8 6r5c2
*D*|              6r9c2 1r7c2
1C6|                    1r7c6 1r3c6
1C8|        1r5c8             1r3c8  1r4c8
6B6|                                 6r45c8 6r4c9
7R4|                                 7r4c8  7r4c9 7r4c3
7R2|                                              7r2c3 7r2c6
2C6|  2r7c6                   2r3c6                     2r2c6
---+---------------------------------------------------------
   | -2r7c4

Do you see it the same way? What's different from my earlier attempt is that the two cases are strongly linked to begin with, so they can be assumed as singles in the sub-matrices (with corresponding eliminations), which simplifies the cases. In my earlier example they were part of a 3-SIS turning into two cases of 2-SIS. I would think it's a logical extension to the same principle, but I can't be sure without seeing more examples. What do you think of that interpretation?

Yes, this a valid TM. The 3-SIS are not required to be at the bottom (and you could imagine other permutations of rows, but keep always 1r1c8 above 1r1c2).

Ok, thanks for that confirmation too!

As to your proposal for December 11,2018 , nice 5*5 matrix !

Thanks! Eleven's original solution was so cool that it was fun to work with. Combining it with Steve's also cool one made it even more interesting -- and surprisingly the end result (as a matrix) was simpler than the original.

Why not try something more compact ?
Code: Select all
    | 8r3c5b2 8r5   34c4b5   5b5
----+--------------------------------
8C9 | 8r3c9   8r5c9
5N4 |         8r5c4  3r5c4
14N4| 8r1c4         34r14c4  5r4c4     
6N5 | 8r6c5          3r6c5   5r6c5

[Added 5r4c4 into row 3.] Yes, in this case it's both shorter and probably closer to the way most would see it on the grid. I think I considered writing it like that, but at this time I like to keep my matrices as uncompressed as possible just like when I was learning AICs. It makes them simpler to understand for a matrix novice like myself. I also think that one benefit of matrices is that they can be more easily broken into smaller pieces than AICs (which often depend on group and ALS nodes to avoid nets), so one can see what actually happens on the cell level. With more experience it probably gets more natural to use larger nodes in matrices as well, but first I want to learn how far they can be uncompressed.

SpAce wrote:here's my attempt to write the two available SDCs as matrices. Is that ok?

I find it difficult to accept to derogate from the rule of filling matrices with SIS in rows and WIS in columns. So, including r1c8 in the SDC needs some contortions such as the ghost candidate or the trivial SIS size one. If there were a clear benefit, maybe. With this example I am not convinced.

I agree. I just wanted to find out how it should be done if need be. My initial feeling was the same as yours about the column WIS rule being broken, but maybe it's not really broken in a symmetric PM? I presume it wouldn't work in a TM or a non-symmetric PM.

Next exercise
SpAce wrote:Kraken Cell (245)r4c6
...
Is that thus a BTM? Can you see any other way to do it?

I don't know... Didn't try another way, since this matrix is a PM (as well as your first version)
The check if a matrix is a PM, just check the weak links in columns containing > 2 candidates (here column 3 and 6). Column 1 is out of the check.

Wow! That was a major revelation! Thanks! I didn't even think it that way, but you're right of course. I think I finally picked up a missing piece of the TM vs PM mystery. In set logic terms, it seems that we need a TM when there's at least one set or link triplet, which in the matrix translates into an ANDed row node or a double entry in a a column or otherwise a column being not fully weakly-linked, all preventing a PM. And vice versa, if a matrix has any of those features its set logic form has at least one triplet, so it can't be a PM. Here it doesn't, so it can -- which is nice. Would you agree with that?

Puzzle May 5, 2019
SpAce wrote:What about this slightly different view of the same:
...
Would that work, or any cleaner way to do it (with those sets)?

I tried something similar in the first example (May 1,2019) without benefit. Note here that the second column in your first version prevent the matrix from being a PM. It is the same with your modified version (third column, consider that 2r8c2 and 3r4c6 are in the same column). It is valid, but I can't see any benefit: same size of matrix, same eliminations and clarity not improved.

Yes, I definitely agree that the first version is simpler and easier to read. I just thought it was an interesting comparison because the first matrix corresponds with a link triplet and the second one with a set triplet. Both kinds prevent it from being a PM. The link triplet version seems cleaner, but sometimes the set triplet might give a simpler solution, like here. Does that seem ok? If I try to do it the other way, I end up with something like this:

Alien 3-Fish (Mixed Rank 1/0) 6:R3C67\r15b12 => -6 r1c35; stte
(link triplet 6r12c6 => Rank 0 in set C6 extending to 6r1)

...which I think is harder to explain as an AIC or a matrix:

Code: Select all
.-----------------------.-------------------------.-----------------------.
| 2      457     458-6  |  1       8-6    d5(6)78 | a(6)7   9       3     |
| 13579  13579   3569   |  25679   2369   d25(6)7 |   4     267     8     |
| 379    379    f3(6)89 | e26789  e23689   4      |   1     5       27    |
:-----------------------+-------------------------+-----------------------:
| 3457   3457    1      |  568     468     9      |   2     34678   47    |
| 3459   8       23459  |  256     7      c1256   |  b369   1346    149   |
| 6      2479    249    |  3       1248    128    |   789   1478    5     |
:-----------------------+-------------------------+-----------------------:
| 1459   12459   7      |  2689    12689   3      |   589   1248    1249  |
| 1349   6       2349   |  2789    5       1278   |   3789  123478  12479 |
| 8      12359   2359   |  4       129     127    |   3579  1237    6     |
'-----------------------'-------------------------'-----------------------'

As a multi-headed AIC and my matrix translation of that:

AB:(6)r1c7 = r5c7 - r5c6 = A:(6)r12c6 - r3c45 = B:(6)r3c3 => -6 r1c35; stte

Code: Select all
   | 6r1b1 6r5   6b2
---+-------------------
6C7| 6r1c7 6r5c7
6C6|       6r5c6 6r12c6     
6R3| 6r3c3       6r3c45
---+-------------------
   | -6r1c3      -6r1c5

Seems simple, except for the second elimination. How are we to see the sub-chain 6r1c7==6r12c6 proving it?

...or as a split-node AIC and the corresponding matrix (the way I see it):

(6)r1c7 = r1c5 - r5c6 = r12c6 - r3c45|r5c6 = (6)r3c3&r12c6 => -6 r1c35; stte

Code: Select all
    |  6r1b12 6r5   6b2c6
----+---------------------
 6C7|  6r1c7  6r5c7
 6C6|         6r5c6 6r12c6
[6R3| &6r3c3        6r3c45
[6C6| &6r12c6       6r5c6
----+---------------------
    | -6r1c3     
    | -6r1c5

Now both eliminations are perhaps easier to see, but it's otherwise complicated and redundant. How would you write that?
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: May 1, 2019

Postby Cenoman » Fri May 10, 2019 3:50 pm

Steve K's BTM example:
SpAce wrote:As far as I see, the only real instruction for interpreting that is this:

SteveK wrote:Note that (1)r6c6 reverts cleanly back to matrix column 1 with a 3x3 Triangular matrix, whilst (6) r6c6 leaves in its wake a 9x9 Triangular matrix.

I take it means that we try both cases of row 2 (6N6) and end up with these two strongly linked TMs:
[....]
Do you see it the same way? What's different from my earlier attempt is that the two cases are strongly linked to begin with, so they can be assumed as singles in the sub-matrices (with corresponding eliminations), which simplifies the cases. In my earlier example they were part of a 3-SIS turning into two cases of 2-SIS. I would think it's a logical extension to the same principle, but I can't be sure without seeing more examples. What do you think of that interpretation?

Without any certainty, I'd say your interpretation is the right one. I long wondered what Steve K meant in his quoted sentence. I had in mind a process where the questionable entries had to be erased from the matrices with the cascade of linked terms. Your interpretation of a trial of different possible cases is convincing. So thank you for opening my eyes on that.

Then, back to your original matrix for May 1, 2019 (this thread), your matrices TM a & TM b are in line with this process and you can claim that your original matrix is a BTM. It would be strange to find that a re-ordered valid TM is not a BTM (but this is not an argument).

Puzzle of May 6, 2019

You have proposed 4 different matrices
Hidden Text: Show
Code: Select all
2x2 matrix (symmetric PM ?)
       |  6r1     | 6r2 & 6r5                |  6r1     6r2    6r5            | 6r1b1 6r5   6b2              |  6r1b12 6r5   6b2c6
-------+----------+------------       -------+----------------------       ---+-------------------       ----+---------------------
6C7,6B3|  6r1c7   | 6r2c8&6r5c7       &6B3   |  6r1c7   6r2c8              6C7| 6r1c7 6r5c7               6C7| 6r1c7 6r5c7
6C6    |  6r1c6   | 6r2c6 6r5c6       &6C7   |  6r1c7          6r5c7       6C6|       6r5c6 6r12c6        6C6|         6r5c6 6r12c6     
-------+----------+------------        6C6   |  6r1c6   6r2c6  6r5c6       6R3| 6r3c3       6r3c45       [6R3| &6r3c3        6r3c45
       | -6 r1c35 |                   -------+----------------------       ---+-------------------       [6C6| &6r12c6       6r5c6                                                       | -6 r1c35                       | -6r1c3      -6r1c5       ----+---------------------
                                                                                                             | -6r1c3
                                                                                                             | -6r1c5

SpAce wrote: How would you write that?

I'dsay the first one is a symmetic PM (2x2 with first column=WIS is always a PM), not easy to read. Symmetry is of no use, as the second column eliminates nothing.
The fourth one is, as you state yourself "complicated and redundant"
SpAce wrote:How are we to see the sub-chain 6r1c7==6r12c6 proving it?
in the third one; nice question...

So, my prefered is the second one. It is the matrix of a simple kraken column:
(6)r1c6
(6)r2c6 - r2c8 = r1c7
(6)r5c6 - r5c7 = r1c7
=> -6 r1c35
The matrix (TM and PM, but not symmetric), as well as the kraken show clearly the three needed SIS: 6C6, 6C7, 6B3 and the eliminations.
Note these three SIS are present in all other trials, and they are sufficient, as shown by this version.
Cenoman
Cenoman
 
Posts: 2975
Joined: 21 November 2016
Location: France

Next

Return to Puzzles