Alrighty folks, finally "deciphered" all 26 of
Red Ed's example grids. Really tough work collectively! (Especially
the "Full-Diagonal", "Half-Turn" & "Quarter-Turn" grids. I had to apply logical techniques to find the correct isomorphs. Definitely recommended to all who like challenges!
)
So here I'll list them, including the original grid (in line format), morphing ops, new grid, and the details of the symmetry. I'll also colour some of the cells in the new grid to highlight the "symmetrical effect".
1a. C:
123456789987123546645987132312564897879312465456879213231645978798231654564798321c123456798
123456798
987123564
645987123
312
564879
879312456
456879231
231645
987798231645
564798312
Mini-Rows: (123)(456)(798)
1b. CR1:
123456789897123456645978123312564978978312564456897312581249637734681295269735841r987123456
269735841
7
34681295
58
1249637
123456789
897123456
645
978123
312564978
978312
564456897312
Mini-Diagonals @ r123, Mini-Rows @ r456789: (123)(456)(789)
1c. CR1R2:
123456789456789123789231645247395861691842537835617294374168952518924376962573418r546789123
691842537
2
47395861
83
5617294
37416
8952
518
924376
9625
73418
123456789
456789
123789231645
Mini-Diagonals @ r123456, Mini-Rows @ r789: (123)(456)(789)
1d. CR:
123456789456789123789123456214865937865937214937214865371542698542698371698371542123456789
4
56789123
78
9123456
2148
65937
86593
7214
937
214865
37154269
8542698
371
6983715
42
Mini-Diagonals: (159)(267)(348)
2a. S:
123456789789123456645798123312564897897312564456879312231645978978231645564987231r<->c (Transpose)
176
384
295
284195376
395276184
417
538
629
529617438
638429517
741
853
962
852961743
963742851
Jumping-Rows: (132)(456)(789)
2b. SR1:
123456789456789123789123456234891567591267834867534291348915672612378945975642318123456789
456
789123
789123
456
234891567
591
267
834
867534291
348915672
612
378
945
975642318
Gliding-Rows @ r123, Jumping-Rows @ r456789: (174)(285)(396)
2c. SR1R2:
123456789456789123789123456231897564567234891894561237315648972648972315972315648r789123456
315648972
648
972315
972315
648
1234567
89
4
56789123
7891
23456
231897564
567234891
89
456
123
7Gliding-Rows @ r123456, Jumping-Rows @ r789: (174)(285)(396)
2d. SR:
123456789897123654654879132312564978978312465546798321231645897789231546465987213c132465789, r<->c
186395274
374
286195
295174
386
418537
629
639428517
527
619438
761
943852
853762
941
942851763
Gliding-Rows: (123)(4)(5)(6)(7)(8)(9)
2e. SC1:
123456789456789123789123456234567891567891234891234567345678912678912345912345678r<->c
147258369258369471
369471582
471582693
582693714693714825
714825936
825936147
936147258Full-Rows: (123456789)
2f. SR1C1:
123456789456789123789231645231897456645123978897564231312978564564312897978645312c123456897
123456897
456
789231
789231
456231897564
645123789897564312
312978645
564312978978645123
Waving-Rows @ r123, Full-Rows @ r456789: (174285396)
2g. SR1R2C1:
123456789456789123789231645231897456645123978897564231312645897564978312978312564r789123456,c123456897
312645
978564978123
978
312645
123
456897
456789
231789231456
231897564
645123789
897564312Waving-Rows @ r123456, Full-Rows @ r789: (174285396)
2h. SRC1:
123456789456789123789231645231564978645897231897123456312645897564978312978312564c123456897
123456897
456
789231
789231
456231564
789645897312
897
123564
312
645978
564978
123978312645
Waving-Rows: (174285396)
3a. BS:
123456789456789123789123456235964817817235964964817235392641578578392641641578392r123465798
123456789
4567891
23
78912
3456
235
964817
9
64817235
81723596
4392641
578
6415
78392
57
8392641
Jumping-Diagonals: (195)(267)(348)
3b. BSR1:
123456789456789231789123645231564897564897312978312564312645978645978123897231456r<->c
1472
5936
82583
6714
93691
4825
747
15836
92
58
26914
73
69
34725
81
7
2683
5914
8
3491
6725
9
1572
4836
Broken-Columns: (159267348)
3c. BSR1C1:
123456789457289163689173452235741896816392574974568231392817645568924317741635928r132564978, c132465879, r<->c
1648
9273
53
9764
5128
28
51734
96
412
3576
89
6
392
8157
457
896
4312
85
6739
241
7415
289
63
9
2341
685
7Full-Diagonals: (132986547)
4a. DD2:
123456789869127435457938126216374958785219643934685217671543892392861574548792361r879213546, c654879123
168754392
345982671
29763154
8721345869
654879123
83921645
7912463785
473598216
58612793
4Half-Turn: (7)(14)(25)(36)(89)
4b. DBxRx:
123456789456789231789312456214938567375641892698527314561273948837194625942865173r987123456, c465879321
85671324
9149265
738
2
37498165
465879321
7983
21654
321546987
9836574
12
61
4982573
57213489
6Quarter-Turn: (2)(1437)(5896)
5a. D:
123456789579128643684739125412673958958214376367985214831562497796841532245397861r456789123
4126
73958
95
8214376
3
67985
214
831562497
796841532
245397861
12
3456789
579128643
684739125
Diagonal-Mirror: (4)(5)(7)(19)(23)(68)
5b. DBS:
123456789457189236968372514291738465374265198685941327546813972732694851819527643r789213654, c132456879
564
813
792
7
23694581
891527463
475189
326
1324
56879
986372154
658
941237
3472659
18
219738645
Diagonal-Mirror: (1)(2)(5)(39)(48)(67)
Jumping-Diagonals: (125)(368)(497)
5c. DRC:
123456789456789231789123645215348976398672514674915823541897362832564197967231458r789213456, c123456879
5418
97632
83256
4917
967
231548
45
6789321
123456879
7
89123465
215348
796
3986721
54
67491528
3Diagonal-Mirror: (3)(5)(7)(19)(26)(48)
Mini-Diagonals: (186)(294)(375)
6a. BxCx:
123456789978213465546798231217864593835129674469375128752931846694582317381647952r978123456, c312456897
138
647529
275931468
469
582173
312456897
897
21
3654
654798312
72186
4935
583129746
94637
5281
Column-Sticks: (1)(5)(9)(23)(46)(78)
6b. BxCxR:
123456789456789123789123456234591867567834291891267534378942615612375948945618372r897123456
612375
948
945618
372
378942
615
1234567
89
4567891
23
7891234
56
23459186
756783429
189126753
4Column-Sticks: (2)(5)(8)(13)(46)(79)
Mini-Columns: (147)(258)(369)
6c. BxCxS:
123456789457189326689327154291635847745891632836742591318264975574918263962573418r321456789, r<->c
641
278
359
852943176
973156842
3
146
872
95
285394617
796512483
13
786
592
4528439761
469721538
Column-Sticks: (1)(8)(9)(25)(34)(67)
Jumping-Rows: (189)(236)(475)
6d. BxCxSR2:
123456789456789123789132465218967534564213978937548216391875642645321897872694351r789123456, c312546879
139785462
564
231
987
287964531
3
12546879
6458
79213
9783126
45
821697354
45
612
379
8793458126
Column-Sticks: (1)(4)(7)(23)(56)(89)
Jumping-Rows @ r123789, Gliding-Rows @ r456: (174)(295)(386)
6e. BxCxSR:
123456789456789123789123456214937865865214937937865214342678591591342678678591342r456789132, c132465798
2419
73856
8562419
73
9
73856241
3246875
19
5
19324687
6875
19324
1324
65798
7981324
65
4
65798132
Column-Sticks: (1)(2)(8)(34)(59)(67)
Gliding-Rows: (1)(2)(3)(4)(5)(6)(7)(8)(9)
6f. BxCxSR1R3:
123456789456789123789132465248573916537961248961248537394815672672394851815627394r456789312, c312546879
824753
196
753691428
196
428357
439185762
2
679
345
81
581267934
97831264
531
2546879
64587
9213
Column-Sticks: (3)(6)(8)(15)(27)(49)
Gliding-Rows @ r123789, Jumping-Rows @ r456: (174)(295)(386)
PS: nice moves
eleven, I think you've found a great technique in "cells in a minirow/column must have numbers from different cycles"!
Will explore to see if this idea can be developed into more powerful tricks.