by Red Ed » Sat Feb 14, 2009 5:09 am
I wondered what different abstract groups were represented in the set of 122 non-trivial automorphism groups. The results are below. Each subset of aut groups has a heading which is GAP's "StructureDescription" of the aut group. Most of the StructureDescriptions uniquely identify the abstract group, but some of the semidirect products, like (C3 x C3) : C2, do not (since the homomorphism, which is an aspect of the semidirect product, is elided). Nevertheless, I have verified that the aut groups for the entries under each heading are all isomorphic.
It would be illuminating, though I expect beyond my enthusiasm, to rework the aut group generators (the <A,B,C,...> lists) so that they had the same form under each heading and you could say for example "transposition in this aut group is equivalent, in the abstract, to half-turn in that aut group". But I sense even before seeing the reaction to this post that genuine interest in that may be limited.
C2
2 157694823824173695963582174549238716716945238238716549691457382482361957375829461 1 134 <BxCx>
2 319246875246875913578319624752693148691428357483157296827531469135964782964782531 1 79 <H>
2 457826913162953847983471625274685139819237456635194278726548391548319762391762584 1 37 <D>
C3
3 246187539137259486589436217758943621924618753613725948861572394375894162492361875 1 32 <RS>
3 275849163843165279169273845587326914326914587914587326732691458691458732458732691 1 30 <R2R3S>
3 347965821659218347182473965596821473473596182218734596931687254864352719725149638 1 7 <R3C>
3 359782146278146593614593782761254938945318627823679451482967315136425879597831264 1 10 <RC>
3 497863125251497638638125974863512497974386251125974863749638512512749386386251749 1 8 <C>
3 587946231246531987931287546654193728793628154128754693469875312875312469312469875 1 28 <R3S>
3 682439517537681429419572683823794165145863792796125834278946351354218976961357248 1 22 <BS>
3 718564392564239718392718645631852974849376521275491863427683159153947286986125437 1 9 <R2R3C>
3 829153764754869123163724859231547698598631247647298531376482915415976382982315476 1 25 <S>
C4
4 592137468674582193831496725146953287957268341328741659483615972719824536265379814 1 79 86 <Q>
C2 x C2
4 279135486684279351153468279348516927516927843927843615792681534435792168861354792 1 79 134 <H,BxCx>
4 964285371732194685581376249813952467296417538457863912378549126625731894149628753 1 37 79 <H,D>
C6
6 251897463674532918398164752746325189523981647189746325932618574467253891815479236 1 25 134 145 <S,BxCx>
6 276435819819276435435819276342198567567342198198567342653724981981653724724981653 1 32 134 142 <BxCx,RS>
6 471965328965832471328471965714596832596283147832147659147659283659328714283714596 1 8 134 135 <C,RxSx>
6 519736284742581639386249751691357842257814396834692517963175428175428963428963175 1 10 37 40 <DR>
6 563712489189453762742689153356271948298346571471598326635127894824935617917864235 1 22 37 43 <D2S>
6 689523417714689325325417986196274853853196274472358691267931548548762139931845762 1 30 134 143 <R3BxSCx>
6 734568129861927435952413876143295687295786341687341592416872953378659214529134768 1 28 134 144 <BxCx,R2S>
S3
6 124386795369751248587492613835974126742163859691528437976215384253847961418639572 1 22 37 <D2,BS>
6 136452978452897136897361452245789361613245897978136245524978613789613524361524789 1 8 79 <H,C>
6 147256389829437516356189247714625938982743651635918724298561473561374892473892165 1 28 134 <RxSx,R3S>
6 198426357763895124425317698819642735637958241542731869981264573376589412254173986 1 22 79 <H,BS>
6 256189347347256198189347256521968473473521869968473521612895734734612985895734612 1 32 134 <BxCx,BC>
6 426953187371842956589167342947386521152479638863215794695728413234691875718534269 1 9 79 <H,R1R3C>
6 619345872453728619872619453196287534287534196534196287961453728345872961728961345 1 8 134 <C,BxCx>
6 652789143134652987789134562218475396475396218396218475927561834561843729843927651 1 9 134 <FhR2xCx,R1R3C>
6 732859641148236957659741832273985164814623795965174283396517428481362579527498316 1 25 134 <S,RxSx>
6 759284613284613975136759284568437129491526738327198456842361597613975842975842361 1 7 79 <H,R2C>
6 795821463821463795463795821954638217237914658618257934182346579346579182579182346 1 30 79 <H,R1R3S>
6 876419352549732186312856479954681237681273945237945618495168723168327594723594861 1 30 134 <RxSx,R2R3S>
6 894326715312857496756914832569748321248193657173562984625489173487231569931675248 1 10 37 <D2,RC>
6 973526418416978523528413976265184739184739265739265184897352641341697852652841397 1 25 79 <H,S>
6 976254813253816974814973256138542769542769138769138542681497325397625481425381697 1 28 79 <H,R2S>
6 976841532842536971531972846325719468769428315418365729184253697653197284297684153 1 32 79 <H,RS>
6 985631247623947815741825639158493726396752481472186953814579362539268174267314598 1 10 79 <H,RC>
D8
8 648732951751694832932851647469273185185469273273185469896327514517946328324518796 1 37 79 86 134 <D,BxCx>
C9
9 128375964375964281496128375812496753964537128537281496281649537649753812753812649 1 8 29 <R2R3C1S>
9 618475932932186754754329861861547293475932186329861547293754618547618329186293475 1 8 26 <R3C1S>
C3 x C3
9 187234956625798413349561872432659781978143265516827394263975148894316527751482639 1 10 25 32 <S,RC>
9 259643781178925364643781259925178643781364925364259178896537412412896537537412896 1 7 28 30 <R2S,R3C>
9 265719843971438652384652197526971438197843526438265971652197384719384265843526719 1 8 28 30 32 <C,C3B>
9 358741269926835417417692835692417583741358926835926741174583692583269174269174358 1 7 8 9 10 <C,C3R>
9 549837126126549837837126549481765293293481765765293481314972658972658314658314972 1 9 30 32 <R3RS,R2R3C>
9 643917258985234671127568493364791825598423167712856349436179582859342716271685934 1 22 25 32 <S,BC>
9 675283149914567328832491756769825413341976582258134697183752964527649831496318275 1 10 28 30 32 <RC,R3S>
9 692357814573814926148269735926735481357481269814692573269573148735148692481926357 1 8 25 32 <B,C>
9 695174823482369517731258946567412389948736251123895674279681435354927168816543792 1 9 28 32 <R3S,RSC>
9 718436259925871364643592187364925718871643592259187436436718925592364871187259643 1 8 32 <C,RS>
9 782915643364782591159436782827159364436827915591643827245398176973261458618574239 1 7 30 32 <RS,R3C>
9 814956327732148695695327481327569814956481273148273956261835749583794162479612538 1 7 9 <C3R,R3CC>
9 872456193693812457451793862236145978918237645745968231129574386387629514564381729 1 22 32 <BC,RS>
9 953768214781245936246931785475326891369817452812459367137582649524693178698174523 1 22 25 <B,S>
D12
12 127984635356271984498356127712849563563712849849563712271498356635127498984635271 1 8 79 134 135 <H,C,RxSx>
12 358479621429651378671328459783294516294516783516783294867932145942165837135847962 1 25 79 134 145 <H,S,BxCx>
12 518349267642875913379126548836512794427698135951734826795263481164987352283451679 1 22 37 43 79 <D,D2S>
12 716283459529146873483759216295837164837461592164592738648375921952614387371928645 1 28 79 134 144 <H,BxCx,R2S>
12 817692354354817692692354817178265439439178265265439178781546923923781546546923781 1 32 79 134 142 <H,RS,BxCx>
12 856219734219437658734658912921865473568374129473921865192743586347586291685192347 1 30 79 134 143 <SH,R3RxSx>
12 861345927247169385359827164685931742174286539923754816538692471416578293792413658 1 10 37 40 79 <D2,DR>
D18
18 125398467398746251746251398839467512467125983251983746674512839512839674983674125 1 8 31 79 <H,C1RS>
18 137528496825649731469173285974381652318256974652794318596417823741832569283965147 1 10 23 79 <H,R1C1BS>
18 471385269853926471692714853926853714714269538538147692147538926385692147269471385 1 8 29 79 <H,R1R3C1S>
18 519623478784195623623478195195236784478519362236784951951362847847951236362847519 1 8 24 79 <H,C1BS>
18 654231798798546312231798546312987465879654231546312987465123879987465123123879654 1 8 27 79 <H,C1S>
18 681593427274168359935274168816742593742935681359681274427816935593427816168359742 1 8 26 79 <H,R2C1S>
C3 x C6
18 237154698986372154415986237372541986869723541154869372723415869698237415541698723 1 8 25 32 134 135 142 145 <B,C,RxSx>
18 825746931674931582931825746582467193467319258193258674258674319746193825319582467 1 8 28 30 32 134 135 142 143 144 <C,RxSx,C2B>
C3 x S3
18 421657938389421765576893421214389576657214893938765214142938657765142389893576142 1 8 32 134 135 <C,RxSx,RS>
18 642319785785642319319785642463921857857463921921857463236194578578236194194578236 1 22 32 134 142 <BxCx,BC,RS>
18 695321748487956213321748695569132874874569132132874569748213956213695487956487321 1 8 28 134 135 <C,RxSx,R3S>
18 746829513315647928829513746197438265562791834438265197681954372273186459954372681 1 22 25 134 145 <B,S,BxCx>
18 786951243951243786243786951174625839839174625625839174597468312468312597312597468 1 9 30 32 134 142 <BxCx,R1R2SC>
18 815923764476581392923764815647239158239158647158647239764392581392815476581476923 1 8 30 134 135 <C,RxSx,R2R3S>
18 873215946291634785564978132415362897637849521928751463346197258789526314152483679 1 10 22 37 40 <D2C,BS>
18 963287415847195623215463987396728541784519362521346798639872154478951236152634879 1 22 25 32 134 142 <S,RxSx,BC>
18 984253671235176849671894523716532498849761235352948716167325984498617352523489167 1 8 9 134 135 <RxSx,C1C2R>
(C3 x C3) : C2
18 158349726934672815267581493782195364519436278643827951326758149875914632491263587 1 10 25 32 79 <H,S,RC>
18 259184367418736592736925184587349621162857943394261875673592418925418736841673259 1 7 9 79 <H,C2R,CHR2>
18 315692478498375612672418395186954723753126984924783156839567241261849537547231869 1 22 25 79 <H,S,B>
18 354716298167982543298354716639875421875421639421639875543167982716298354982543167 1 7 25 28 79 <H,S,R2C>
18 536712498271894356984635172613278549827459631495163287368527914752941863149386725 1 22 32 79 <H,BC,RS>
18 547183926329645781861279435754318692932564178186927543475831269293456817618792354 1 22 25 32 79 <H,S,BC>
18 615293874293748561487561329156932487932874615748615293561329748329487156874156932 1 8 25 32 79 <H,C,B>
18 643297518972518364851643972596382741417965823238174659185436297364729185729851436 1 7 30 32 79 <H,RS,R2C>
18 749236158158749623623581497974362815815497362362815749497623581581974236236158974 1 8 28 30 32 79 <C,H,C2B>
18 768124395539876412241953687472368951683519724195247836324795168816432579957681243 1 10 28 30 32 79 <H,RC,R2S>
18 876349512934125687125687493251934876768512934349768125687493251493251768512876349 1 7 8 9 10 79 <H,C,C2R>
18 934761582582934617176582934761493258258617493493258176825349761617825349349176825 1 8 32 79 <H,C,RS>
18 956341827734682195218579463671938542425167389893254716569413278347826951182795634 1 9 28 32 79 <H,R2S,RSC>
18 975362184184597623362184975759623841418759362623841759597236418841975236236418597 1 8 22 79 <H,C,BS>
C3 x C3 x C3
27 695287134287413695413695728341956287569872341728134956872341569134569872956728413 1 7 8 9 10 28 30 32 <C,C2B,C3R>
27 857612943394578126261439785578261394439785612126943857785126439943857261612394578 1 8 22 25 32 <B,C,RS>
S3 x S3
36 178459623659132487423687195817945362965213748342768519781594236596321874234876951 1 22 32 79 134 142 <H,RxSx,BC,RS>
36 279145683638297154145683279927514368863729415514368927792451836386972541451836792 1 22 25 32 79 134 142 145 <H,S,BxCx,BC>
36 294371865361895274875264391752643918613958742948712653487126539136589427529437186 1 22 25 79 134 145 <H,S,B,RxSx>
36 516482973824739165973516482651248397248397651397651248165824739482973516739165824 1 8 25 79 134 135 145 <H,C,S,RxSx>
36 629471835835629471471835629962358714714962358358714962296147583583296147147583296 1 8 32 79 134 135 142 <H,C,RxSx,RS>
36 712398564645127983398564712456839271839271456271456839127983645564712398983645127 1 8 28 79 134 135 144 <H,C,BxCx,R2S>
36 952786413743915862816342759625891374397254681184673295239168547478529136561437928 1 10 22 37 40 43 79 <D2S,DR>
36 953274816274681539816539427168742395395168742742395168427816953681953274539427681 1 8 30 79 134 135 143 <C,SH,R3RxSx>
(C3 x C3) : C4
36 698427135452183679713569842549812763831796524276354981384971256967245318125638497 1 22 25 79 86 <Q',S>
36 716284593428593716593671428372469851649158372851327649167842935284935167935716284 1 7 9 79 86 <Q,C2R>
C3 x C3 x S3
54 159372468684159237723846159915723684846915372237468915591237846468591723372684591 1 8 22 25 32 134 135 142 145 <B,C,RxSx,RS>
54 297361845458972613361845297729613584845729361136458729972136458584297136613584972 1 8 9 28 30 32 134 135 142 143 144 <C,RxSx,C3BR>
54 768395412249871536153624987415762398836549271927183654392418765571236849684957123 1 10 22 25 32 37 40 43 <B,DR>
(C3 x C9) : C2
54 512347689473968512896125473251734968347896251689512347125473896734689125968251734 1 8 24 25 31 32 79 <H,B,C1RS>
54 864579123231486957579123648486957312123648795957312864648795231312864579795231486 1 8 24 25 27 32 79 <H,B,C1S>
(C3 x C3 x C3) : C2
54 165348729834972516297651483748129365912536874653487291329765148576814932481293657 1 10 22 25 32 79 <H,S,B,RC>
54 297415836368729154541683972729541683836972415154368297972154368683297541415836729 1 8 22 25 32 79 <H,C,B,RS>
54 951678432432951867867243951786432195195786243243519786324195678678324519519867324 1 7 8 9 10 25 28 30 32 79 <C,H,B,C2R>
((C3 x C3) : C3) : C2
54 318562749974831256562749318183625497749318562625497183497256831256183974831974625 1 8 9 28 30 32 134 135 <RxSx,R3S,C2C3C3R>
(S3 x S3) : C2
72 814237695695148723723956814569372481372481569481569372148723956956814237237695148 1 8 10 37 40 79 86 134 135 <D2,C,BxCx>
72 827541963165329748943867521438675219516932874279418635794186352651293487382754196 1 22 25 37 43 79 86 134 145 <D2,S,RxSx>
S3 x ((C3 x C3) : C2)
108 659178243824365917731492586178243659365917824492586731243659178917824365586731492 1 10 22 25 32 37 40 43 79 <B,D2,CH>
108 674983251251674983983251674125398467398467125467125398746839512512746839839512746 1 8 10 28 30 32 79 134 135 142 143 144 <R,C,H,BxCx,R2S>
108 312564897897312564564897312123456789789123456456789123231645978978231645645978231 1 8 22 25 32 79 134 135 142 145 <H,C,B,RxSx,RS>
C3 x (((C3 x C3) : C3) : C2)
162 514238697823769451697514238451823769382976145769451823145382976238697514976145382 1 8 9 22 25 30 32 134 135 142 145 <B,S,RxSx,C1C3C3R>
(((C3 x C3) : C2) x ((C3 x C3) : C2)) : C2
648 639281475281475639475639281396812754812754396754396812963128547128547963547963128 1 8 10 22 25 32 37 40 43 79 86 134 135 142 145 <D2,C,S,BxCx>