Hello,
As continuation on the sub-thread on thread “3-row x-sudokus”, I wonder if it is possible to create
an X-sudoku with only clues on the last band, ie with 54 empty leading cells.
phil
.........
.........
.........
.........
.........
....432..
913684752
468527913
527139468
Leren wrote:More practically, this is the best I have come up with:
- Code: Select all
.........
.........
.........
.........
.........
....432..
913684752
468527913
527139468
This has just 19 solutions,
urhegyi wrote:My record at the moment is 51 empty leading cells:
- Code: Select all
...................................................9871.25.4..673.18..424.8.3.7.9
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . 2 3
1 3 4 5 6 7 8 9 2
5 9 2 1 8 4 7 3 6
7 6 8 9 2 3 5 4 1 6 solutions
.........
.........
.........
.........
.........
....4329.
913684752
468527913
527139468
.........
.........
.........
.........
.........
......123
134567892
592184736
768923541
Leren wrote:
- Code: Select all
.........
.........
.........
.........
.........
....4329.
913684752
468527913
527139468
This one has one extra clue added in Row 6 and just 2 solutions.
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . 3 2 9 7
. 1 3 . 8 4 . 5 .
. 8 6 5 2 . . . 3
5 . 7 . 3 9 . 6 8 ED=7.2/1.2/1.2, 50
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . 9 2 7
. 1 3 . 8 4 . 5 .
. 8 6 5 2 . . . 3
2 . 7 . 3 9 . 6 8 ED=2.9/1.2/1.2, 51
...................................................927.13.86.5..84..7..325..39.68 ED=2.0/1.2/1.2
...................................................526.13.84....8..27.3925..39.68 ED=8.3/1.2/1.2
....................................................12345671829281934765967528431
....................................................12234561789871923654956487321
Leren wrote:Found these two puzzles with band 3 full and 52 empty leading cells. No doubt many sub-puzzles can be found in these.
Leren wrote:All of your puzzles solve band 3 completely with singles. This is not surprising as it is obvious that you can remove at least 5 cells in band 3, one in each row of one box and one in any cell of the other 2 boxes, and achieve this.
I suspect that there are a lot of ways of doing this. You can then try removing extra band 3 cells to see if band 3 still solves with singles and the puzzle is minimal, which is what you appear to have done.
[snip]
Perhaps the next challenge is to find a sub puzzle which does not solve band 3 with just singles, but the sub puzzle is ultimately solvable.
....................................................12.3456.7...718.3.54.56.2739. 19
....................................................12.3456.78..719.3.54.56.873.. 19
....................................................12.34.51.676.1.235.4.85.69.21 20
....................................................12.3456.78..719.3.54.56.873.. 19