Quadriga, sections, such that each partition was itself a valid, and preferably minimal, sudoku puzzle, was discussed.
I got to wondering whether it would also be possible to partition an X-grid in a similar fasion, yielding five valid and discrete puzzles. Here's my first attemp:
- Code: Select all
.......1.2...............34......5.............6......13..7..........6...8....2.. p1 12C, ED=6.6/1.2/1.2
.7...8.......3.8.....9........6......23.......5.1.............5.4.......6..3....1 p2 15C, ED=9.0/1.2/1.2
....6.........7...86........1.....27.....5.......9.......2...8.5....9.73..7...... p3 16C, ED=9.1/1.2/1.2
..4...9...91....5.....2.7.......3...4......6.7......48.....6.....2.1.........4... p4 17C, ED=4.3/1.2/1.2
3..5....2...4....6..5..1...9.8.4.......78.1.9.....23....9...4.....8.........5..9. p5 21C, ED=7.1/1.2/1.2, not minimal
374568912291437856865921734918643527423785169756192348139276485542819673687354291
where p5 is, unfortunately, not minimal.
Maybe someone else can improve on that.
Regards,
Mike