Where to find extreme(+) puzzles?

Everything about Sudoku that doesn't fit in one of the other sections

Re: Where to find extreme(+) puzzles?

Postby SpAce » Tue Sep 26, 2017 4:24 am

I said above that I like to take the path of least resistance, but I guess it's a relative term. On second thought, I may need to make some adjustments even if they're not absolutely necessary for solving success. For example:

Last weekend I solved another Nightmare (Feb 3, 2008) which turned out to be the most difficult (7.9) of them I've encountered so far: 040000030200503004007000600030409050000010000090205040008000400500706008070000090. Still, I guess it wasn't nearly as difficult as my solve path would suggest.

My solution used 18 chains and nets, some of which were pretty complicated. I did enjoy hunting them, but it's hard to justify the complexity if I look at the Hoduko solution which used only 9 chains, none of which were very complicated.

I suspect my biggest leak was that I skipped fishing as always. Seems that I need to start paying attention to that if I want to simplify my solve paths. There are other leaks, of course, but that seems the most obvious and perhaps easiest to fix first.
-SpAce-: Show
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: Where to find extreme(+) puzzles?

Postby StrmCkr » Tue Sep 26, 2017 5:07 am

What are those? I can find information about M-wings and L-wings you also mentioned but not those two.


in essence A.I.C / discontinuous/continuous Nice loops of 3/4 strong=weak links between 1-2 digits are classed and defined and finally named:

this post contains direct links for the other types i mentioned]

S-wing

the H-wing is used by a few people on here an a few other different forums and first appeared and was joking dubbed as a "purple cow" for us long timer :) {which is still displayed as such in xsudoku! }

    Hybrid wings. {pattern defined but no developed thread with examples as it has way to many to display them all. }

    H2-Wing: (X=Y)a - (Y)b = (Y-Z)c = (Z)d "a" and "d" in same unit; a<>Z, d<>X
    H3-Wing: (X=Y)a - (Y=Z)b - (Z)c = (Z)d "a" and "d" in same unit; a<>Z, d<>X


Code: Select all
.-----------------.-------------------.---------------------.
| 1689  4    1569 | 1689  26789  1278 | 125789  3     12579 |
| 2     168  169  | 5     6789   3    | 1789    178   4     |
| 3     158  7    | 189   2489   1248 | 6       128   1259  |
:-----------------+-------------------+---------------------:
| 1678  3    126  | 4     678    9    | 1278    5     1267  |
| 4678  568  2456 | 368   1      78   | 2789    2678  23679 |
| 1678  9    16   | 2     3678   5    | 178     4     1367  |
:-----------------+-------------------+---------------------:
| 169   126  8    | 139   2359   12   | 4       1267  12567 |
| 5     12   49   | 7     49     6    | 3       12    8     |
| 146   7    3    | 18    2458   1248 | 125     9     1256  |
'-----------------'-------------------'---------------------'

basics to this point then:
Almost Locked Set XY-Wing: A=r3c24568 {124589}, B=r8c5 {49}, C=r1268c3 {14569}, X,Y=4,5, Z=9 => r12c5<>9
W-Wing: 1/2 in r7c6,r8c8 connected by 2 in r78c2 => r7c89<>1
Finned Swordfish: 8 r146 c157 fr1c4 fr1c6 => r23c5<>8
Locked Candidates Type 1 (Pointing): 6 in b1 => r2c5<>6
followed by easy steps brings it to here:
Code: Select all
.----------------.-----------------.-------------------.
| 189   4    159 | 6    28    128  | 12579  3    12579 |
| 2     168  169 | 5    7     3    | 19     18   4     |
| 3     158  7   | 189  249   1248 | 6      128  125   |
:----------------+-----------------+-------------------:
| 1678  3    126 | 4    68    9    | 1278   5    127   |
| 48    58   245 | 38   1     7    | 289    6    239   |
| 1678  9    16  | 2    368   5    | 178    4    137   |
:----------------+-----------------+-------------------:
| 169   126  8   | 139  2359  12   | 4      7    256   |
| 5     12   49  | 7    49    6    | 3      12   8     |
| 146   7    3   | 18   2458  1248 | 125    9    1256  |
'----------------'-----------------'-------------------'

Almost Locked Set XY-Wing: A=r1c156 {1289}, B=r23c8,r3c9 {1258}, C=r7c1269 {12569}, X,Y=5,9, Z=1,2 => r1c79<>1, r1c79,r3c56<>2
Almost Locked Set XY-Wing: A=r2c238 {1689}, B=r126c3 {1569}, C=r1c79,r2c7 {1579}, X,Y=1,5, Z=9 => r1c1,r8c3<>9
more basic steps:
Code: Select all
.---------------.-------------.--------------.
| 18    4   59  | 6   2    18 | 579   3  579 |
| 2     16  169 | 5   7    3  | 19    8  4   |
| 3     58  7   | 9   4    18 | 6     2  15  |
:---------------+-------------+--------------:
| 1678  3   126 | 4   68   9  | 1278  5  127 |
| 4     58  25  | 38  1    7  | 289   6  239 |
| 1678  9   16  | 2   368  5  | 178   4  137 |
:---------------+-------------+--------------:
| 9     16  8   | 13  35   2  | 4     7  56  |
| 5     2   4   | 7   9    6  | 3     1  8   |
| 16    7   3   | 18  58   4  | 25    9  256 |
'---------------'-------------'--------------'

Almost Locked Set XZ-Rule: A=r1246c3 {12569}, B=r12456c7 {125789}, X=5, Z=2 => r4c9<>2
Almost Locked Set XZ-Rule: A=r15c3 {259}, B=r134679c9 {1235679}, X=9, Z=2 => r5c9<>2

singles to the end.
Some do, some teach, the rest look it up.
stormdoku
User avatar
StrmCkr
 
Posts: 1434
Joined: 05 September 2006

Re: Where to find extreme(+) puzzles?

Postby ghfick » Tue Sep 26, 2017 12:23 pm

champagne wrote:
Here, we have an heavily downgraded form of potential exocet for the base r12c9 target r6c7 r7c8

1 in the base => 1r7c8
5 in the base => 5r6c7

if you can prove that 4 in the base => 4 (r6c7,r7c8) you have an exocet.

Junior exocet in the most common pattern to prove it and is there in most cases.
In other cases "classical AICs" can establish it


Using the [hidden] UR : r16c79 with {4,5} we see that r6c7 <> 4. So to have an exocet here, we would need to prove that 4 in the base => 4r7c8. Alas, there does not appear to be such a proof.
Can you suggest [or point to] a tough puzzle that contains a 'real' exocet that is not Junior?
David P Bird's compendium contains a section on the 'Senior Exocet'. You are suggesting a different type of extension where the base cells and target cells are in the same band but the 'S' cell requirement is not met.
The use of AICs in this situation suggests some commonalities with Krakens.
ghfick
 
Posts: 238
Joined: 06 April 2016
Location: Calgary, Alberta, Canada youtube.com/@gordonfick

Re: Where to find extreme(+) puzzles?

Postby David P Bird » Tue Sep 26, 2017 4:45 pm

GF the 'Senior Exocet' variation described in the compendium allows target cells to be outside the base cell band. It can just about be classed as a recognisable pattern as it consists of a defninite number of elements that can be checked without needing to track chains. But Champagne's base cells and targets are all in the same band so it does not apply.

As Champagne is willing to accept inference tracking using chains or nets as a means of proving that a pattern exists, he has greater freedom to confirm the pattern is an Exocet.

Champagne, I hope that this contribution makes your life easier as it should save you from having to either read for the first time or revise the defintion of a Senior Exocet!

David
.
David P Bird
2010 Supporter
 
Posts: 1043
Joined: 16 September 2008
Location: Middle England

Re: Where to find extreme(+) puzzles?

Postby SpAce » Mon Oct 02, 2017 10:34 pm

Thanks for the info, StrmCkr!
-SpAce-: Show
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: Where to find extreme(+) puzzles?

Postby SpAce » Thu Mar 22, 2018 11:28 am

Back to where I started. I finally decided to face my original nemesis a third time and see if I'd learned anything in half a year. As told above, my very first attempt on that particular SE 8.4 puzzle failed miserably. As also told, my second attempt sort of solved it, but I wasn't at all happy about how it happened, so I never really counted it. It's been bugging me a bit, but I never looked at the puzzle again until now. Here's what I came up with (unedited p&p steps):

1. AIC (AHS): (6)r3c1 = r3c4 - r1c5 = (6-4)r4c5 = r8c5 - r7c4 = (41-6)r7c89 = (6)r8c9 => -6 r8c1
2. AIC-Loop (ANS, Grouped): (2)r8c4 = (2-4)r7c4 = r7c89 - (4=[9]2)r8c78 - loop => -35 r7c4, -2 r8c1; -9 r8c16, r7c89, r9c79
3. AIC: (2=7)r9c7 - (7=9)r3c7 - r8c7 = (9)r8c8 => -2 r8c8
4. AIC-Hydra (ANS): (#2)r4c8 = r7c8 - (2=94)r8c78 - (4)r8c5 = (#4-1|6)r4c5 = (61)r12c5 - (1=5)r2c9 - r6c9 = (#5)r6c7 => -4 r4c8, -2 r6c7
5. AIC-Hydra (AHS): (#5)r8c6 = (5-#2)r8c4 = (2-4)r7c4 = (41-3)r7c89 = r9c9 - (3=#8)r9c5 => -8 r8c46
6. AIC-Loop (Grouped): (8)r6c3 = r9c3 - (8=3)r8c8 - r79c3 = (3)r6c3 - loop => -2 r6c3; -3 r7c12, r9c2
7. AIC-Hydra: (#8)r4c4 = r6c4 - r6c3 = r9c3 - r9c5 = (8-4)r8c5 = (#4-6)r4c5 = r1c5 - (6=#3)r3c4 => -34 r4c4
8. Kite: (6)r3c1 = r3c4 - r1c5 = (6)r4c5 => -6 r4c1
9. AIC (ANS): (5=1)r2c9 - r2c5 = (1-6)r1c5 = (6-4)r4c5 = r8c5 - (4=92)r8c78 - (2=7)r9c7 - r9c9 = (7)r6c9 => -5 r6c9
10. Kraken Cell: (1378)r1c4 => -26 r1c2 (*a)
11. AIC: (7)r3c8 = r3c7 - (7=2)r9c7 - r7c8 = (2)r4c8 => -7 r4c8
12. Kraken Cell (Nested, ANS): (157)r5c6 => -7 r5c8 (*b)
13. AIC: (2=6)r1c3 - r1c5 = (6-4)r4c5 = r8c5 - (4=2)r7c4 => -2 r7c3
14. Kraken Cell (Grouped): (3467)r4c2 => +8 r6c3 (*c)
15. AIC: (6)r5c4 = r4c5 - (6=1)r1c5 - r1c7 = r4c7 - (1=4)r5c8 => -4 r5c4
16. AIC: (3)r2c5 = (3-6)r3c4 = (6-5)r5c4 = r8c4 - (5=3)r8c6 => -3 r8c5
17. Skyscraper: (6)r1c3 = r5c3 - r5c4 = (6)r3c4 => -6 r3c1, r1c5; stte

Details for (*a, *b, *c):
Hidden Text: Show
(*a)
Code: Select all
r1c4:
|(7)-r1c1==============(7)r1c2--|-(26)r1c2
|(1)-r4c7=r1c7-r1c5==|(26)r1c35-|
|(3)-(3=6)r1c3-|r3c4=|
|(8)-(8=6)r4c4-|

=> -26 r1c2

(*b)
Code: Select all
r5c6:
|(7)-----------------------------------------------------------------------------|-(7)r5c8
|(5)-r8c6=(5-2)r8c4=r8c7-(2=7)r9c7-r3c7=(7)r3c8----------------------------------|
|(1)-r5c1=|(7)-------------------------------------------------------------------|
          |(6)-r3c1=r3c4-r1c5=(6-4)r4c5=r8c5-(4=92)r8c78-|(2=7)r9c7-r3c7=(7)r3c8-|
          |(9)-r5c3=r9c3-(9=2)r9c2-----------------------|

=> -7 r5c8

(*c)
Code: Select all
r4c2:
|(3)-r6c3==========================================|=(8)r6c3
|(4)-r4c5=(4-8)r8c5=r9c5-r9c3======================|
|(6)-r4c45=(6-5)r5c4=r8c4-(5=3)r8c6-(3=8)r9c5-r9c3=|
|(7)-r4c7=r9c7-(7=3)r9c9-(3=8)r9c5-r9c3============|

=> +8 r6c3

Looking back at my first two pathetic attempts (just found the notes and laughed)... yeah, I think I've learned something :) For that I can thank a lot of people here, mostly the same ones who kindly replied to this very first post of mine and gave tips on how to move forward. Still a lot to learn.

The one thing that hasn't changed, however, is the pencil&paper solving system I developed last year. It's been stable since October, and I can't think of any more improvements (to the core at least). I'm very happy with it, except for the slowness. That's why my next ambition would be to turn it into software, but we'll see if that ever happens. Until then I'm stuck with p&p. (I'm not principled about that at all -- I'd switch to computerized solving immediately if any program had the features I want, but none do.)

The puzzle (again):

000900030004700600081054002005000000000020308000090060000070800017000000400106050
-SpAce-: Show
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: Where to find extreme(+) puzzles?

Postby creint » Thu Mar 22, 2018 9:02 pm

With computerized solving do you mean: support for manual inputting logic?
What options should the program have and whats wrong with xsudo?
Maybe i can add some things to my solver.
creint
 
Posts: 398
Joined: 20 January 2018

Re: Where to find extreme(+) puzzles?

Postby SpAce » Fri Mar 23, 2018 1:10 am

creint wrote:With computerized solving do you mean: support for manual inputting logic?

I'm not quite sure what you mean by that. I haven't used Xsudo so I don't really know how it works in that.

What options should the program have?

What I really want is the same unique way of representing the candidate grid (+ some helper views) which I now draw by hand. Without it I wouldn't be able to solve harder puzzles, or at least it would be painful. In the playing mode I don't want any features that I wouldn't be able to do manually on paper, and I don't want it to make cheating too easy when stuck. In other words, I want it to provide tools for solving but not solve for me (unless I specifically ask for it, but then I'm no longer playing). For training, practicing, and post-game analysis the program should have other features as well -- but most what I want I already have in Hodoku, for example.

The main benefits of a software implementation of my system would be speed, better graphics, and automated syncing of multiple views. Reliability is not an issue, as I usually solve months without making a single mistake (and I do everything by hand, including basics).

and whats wrong with xsudo?

The first thing wrong with it is that it requires Windows, which is why I can't say much about else. I guess I could install it on a virtual box but I haven't been interested enough yet. It also seems to require a bit different solving philosophy, but that's not necessarily a bad thing. I think it might be especially good for solving or at least understanding some really difficult puzzles that aren't solvable with any "normal" methods. I don't think I'll be having such ambitions any time soon.

Maybe i can add some things to my solver.

Is your solver publicly available? I've understood from your other posts that it supports all kinds of sudoku variants, which is cool.
-SpAce-: Show
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: Where to find extreme(+) puzzles?

Postby champagne » Fri Mar 23, 2018 3:18 am

David P Bird wrote:GF the 'Senior Exocet' variation described in the compendium allows target cells to be outside the base cell band. It can just about be classed as a recognisable pattern as it consists of a defninite number of elements that can be checked without needing to track chains. But Champagne's base cells and targets are all in the same band so it does not apply.
David
.


Hi David,

I did not work on that topic for long, but the definition of an exoccet accepts the 2 cells in any place. At the very beginning, I explored all cells pairs. Later, when the JE appeared and lacking of interesting examples with cells outside the band, I concentrated on a band.

Later this year, I could restart some exploration on potential hardest with no known exotic pattern.
champagne
2017 Supporter
 
Posts: 7490
Joined: 02 August 2007
Location: France Brittany

Re: Where to find extreme(+) puzzles?

Postby David P Bird » Fri Mar 23, 2018 8:02 am

Champagne,

You wrote:Later this year, I could restart some exploration on potential hardest with no known exotic pattern.

I look forward to seeing what you can find!

One area that might be worth exploring is Almost Multifish (or Almost MSLS), where the list of pattern elimination cells includes one false one. Sometimes, but not often, it is possible to adjust the cover sets to correct this. It would be interesting to see if you can identify which of the eliminations must be right. PJP is also interested in this and his solver uses some brute force checking to find them I believe.

David
.
David P Bird
2010 Supporter
 
Posts: 1043
Joined: 16 September 2008
Location: Middle England

Re: Where to find extreme(+) puzzles?

Postby champagne » Fri Mar 23, 2018 10:40 am

Hi David,

I remember to have tried to combine several "rank 1" logic systems to produce a new exotic pattern, without succes at that time. Using a "rank 1" logic in a chain as some do with ALS is not a big problem, but following eleven's remarks, this is usually not a process that a manual player could apply.

We'll reopen the discussion in due time.
champagne
2017 Supporter
 
Posts: 7490
Joined: 02 August 2007
Location: France Brittany

Re: Where to find extreme(+) puzzles?

Postby yzfwsf » Thu May 07, 2020 8:12 am

Hi SpAce:
I hope it's useful for you.
Code: Select all
         puz                                                                             skfr      Hodoku
020000003400200800007080020100030500000005004006400080030001009005700060600090400   83/12/12   15996
000000603400100000050002010100005700009800004025060090003000900200000030040200006   83/12/12   15708
200600900085002006004050000000700009000004075030010400006080090040001200000300000   83/12/12   13768
007005004300007600090300010004030200000100008070002060050060080630000100009500000   83/12/12   13510
000600070060703009000000300080009050006280003400030800010020500200001900009800002   83/12/12   13062
800100902000090070009005001020009800600070000050600007000006080300810006000050400   83/12/12   13044
008003040000400006900028300006300007800005600050040090000050100200007009080900060   83/66/66   13042
600000050008300100000020008520800060104070000009005002040700090900004600800000005   83/12/12   12540
010000040002400006900068000070000004300000017005100800030004050004800601500010003   83/12/12   12508
050007030002805009300040600006700004090000000500016070005008000070400100400000002   83/12/12   12494
500800400308002005000030080060050100007100006002000070010500600200000004009003000   83/12/12   12470
010200050008000700000006000006003200900070003005100080002007400000900300830020005   83/12/12   12318
000004006005010400900700050100020900030000060007800000001200009060008040200007100   83/12/12   12300
010200006009060100600003070200000009040600030003004800100000004000070300020400050   83/12/12   12250
000004080090200007001070300100800900070040005009001060008405000010030000500006030   83/83/66   12222
500008002008600300060050070800400006001005000070080200009001700000500090000090031   83/12/12   12156
007002300060030070800500002004005030900000600000020001030600020008003500700010800   83/12/12   12136
300000040000030200009200008013006900800900006060020010030107500700060000006005004   83/12/12   12120
000400009080027010500000620090040000005106900800050002300010006002008050000200300   83/12/12   12104
010080004700600010005001000003000400200007005000090080002000096078002000500070200   83/12/12   12082
000008003600400080030062900400000000003010700080009010000007600500040030020300005   83/12/12   12070
010600002009000060000070800030900400900050070008000006080006001004030500500700080   83/12/12   12018
003500080000040005100008400300004000010020300007600050400700009080090200002001040   83/12/12   12014
000090008090000300000004005406010000200005003000000070600700800010043060002500001   83/12/12   11958
000080040400900008050002100020004500001500007000060080080006090100090200005700000   83/12/12   11948
060070002500000400004300010000090600700002050080500007005000004090001020800060300   83/12/12   11936
005090007600003090090000400060080003500600200007032050050007009400010000001200040   83/66/66   11930
000008400400100005060000000020090500700005001508300000002060030600200100040009072   83/12/12   11920
900000600007400001030020009100060007009000500070001900008003000020090004500600100   83/12/12   11912
900500300000000026050003019300008004001000000040620030000004000060700050800060400   83/12/12   11874
000800610400000200070003059003000005050004070000100300082000006010600090600070500   83/83/26   11810
800700004090050000002008600007600003000010040900003800300200061020060400009400005   83/23/23   11776
600000003040800600000067000009700200080005040400010006037100004000003050900070100   83/12/12   11770
023000004500006900006100030000008000010070040032400700007000500200080000040003002   83/12/12   11758
600009008001080000083400010200004030070090602009000001050007000002040090900300800   83/12/12   11710
010005030900010500005700000300900010400008600080060004000009000030100040002057006   83/12/12   11662
000000020070000006006502800040006009000800050000040100050900030002010090930004002   83/12/12   11642
000008600009020001073600000406080000090001080200300005050000900900100002002030060   83/12/12   11638
003000020060002007900060800090008004600940000007000100020700050006030002100005300   83/12/12   11632
700060200010005030002300009030700800007000090800004700400080000006000300020400001   83/12/12   11618
010700900500006008007040000300060800060009004009500020030200400200000085001008002   83/83/66   11612
008500002000010090000003500503040000004700006000001070200006001000070300060100080   83/12/12   11600
700100090001000400080050002040000030500080009003010700004600000000009203900020005   83/12/12   11578
004800300050002008000050020080400009300006080000010600100060000000200075008004060   83/12/12   11524
010006000009800000705010009040600300200001080006400001050008060600070900004100005   83/12/12   11516
030008050700050006009200800070006020200100600005000074090000700500002000007900040   83/12/12   11512
800009060094060000000200100020900080600008004007010300010030500500000000008000002   83/12/12   11478
020800000000700006003060080002300508054002000900070300010007004200500000000010060   83/12/12   11464
010000203000100700005260010030007000600010005004900070080000400400002030003080060   83/12/12   11452
001006009000400700700090040006004002030500080000030400000009020020700004300010900   83/12/12   11450
020060300000004008900200004000570006000002090002900100069020500300800000050003070   83/12/12   11434
040600900001005002700010060006700400000000020002001009007090006900000080050800300   83/12/12   11430
600090080050300000002800006003200017900000400070050800004900008000005600030080020   83/12/12   11418
500080000008106900030000010400020300070800020005090001004900003000032070000000600   83/15/15   11414
004090052800007060000400300000000040080005700009100006500006007060008010001020000   83/12/12   11412
900100600002006009000070040200007008009010006080900200605000003000031000030000070   83/12/12   11400
700090005000003700090000060500800010020076000004001003300060800050008004001500000   83/12/12   11400
004008050900070006070300800600000030040010900000204008007000001000100090100096400   83/12/12   11370
900000007000001080804500600001000000402003090090400003040090706000600000100007200   83/20/20   11368
004090000800002050020600100003204000700100004040070290009003060000060500000700000   83/12/12   11354
000090020090400008005001600003050000050002003206010050040000080100700004009000200   83/12/12   11354
040090010009008300500300008002040006900501800080600070006000700400060000090003001   83/12/12   11328
000900050080012600006007002090000003300090100002003070000600800070004090100000004   83/67/34   11316
900040300007003059000000002200006100050210080009000003700068000030090004002400000   83/12/12   11314
008500100010003070500080024100000200060030007004800060000005700700060009090400050   83/32/32   11308
005070002000001900700400050000100020001040003090006800500014030060080000008200005   83/12/12   11280
000900008000040000002001940600020700000400005008003060540008200007000010090100007   83/12/12   11274
010009004003100200240080000700005060020000003009000500050700600600003000001200007   83/12/12   11264
600019700009006004080000000000008900804900006000070020008030001032000080900001300   83/12/12   11260
030600050400009006107000800250060000000008004009750060500900080004000900000030007   83/12/12   11256
001300000000007040800040200000050003200100050009200700030005070100090002002600800   83/12/12   11234
005010007010007200000500030070009020024300900500400003100004000030005012007100006   83/12/12   11232
030006005006010030100200400090000000500040009008005160003060000400300008080002070   83/12/12   11214
005000090100005400090000007006002005400600080008010700003400006040000070700230900   83/12/12   11200
040600000006004009700080000003000200010300040800020005000030020001900800900071003   83/12/12   11198
004090700030006010900100000200004060009000200170300004020041500800000000001700030   83/12/12   11194
000008003006100050500000400002009040040030500800000002070800010000060000009001307   83/12/12   11194
600000040090040000004102500010090000800003100073200005008001004030900080900020300   83/12/12   11186
030008020002000001600050300040500070009806005500040900007004000300060080050080007   83/12/12   11182
200801040000000002090200000080907050900000003400000800005003400040500080600020005   83/12/12   11164
000800340800010009000006000037000401040002080000500000009100508050080004700003000   83/12/12   11156
030007600600030041001000090050008020009040003300000700020000000003500900100060200   83/12/12   11154
005070010000003002080100700700004800090600300004000005400001000008030900030500006   83/77/77   11148
005060900600504003800002010700005020002800004060000300009001000070000030200070400   83/12/12   11140
500007093000000004001600700400010300000800070062005000200080010090000200010400006   83/67/26   11118
000400000000020700005000028060900000100060400007008002800003001050700060001002900   83/12/12   11102
005007016090010000100300007008020030700900008040000600200400900076009001000060000   83/12/12   11070
400008002010034000000900030090600500800309000000000008080040010005700006600001200   83/12/12   11054
000600980004020100600000004200000010030009500006010008000900602008060050700003000   83/12/12   11050
700800006054010700000000030005700020000006000800040007200030069010000500009008004   83/12/12   11028
001307040000000100060400007003800006000150090080004000050009002700080000009500060   83/12/12   11008
000009004000010089006300100100005000020630000007020500060200900800000020001050003   83/12/12   11004
yzfwsf
 
Posts: 923
Joined: 16 April 2019

Previous

Return to General