## Where to find extreme(+) puzzles?

Everything about Sudoku that doesn't fit in one of the other sections

### Re: Where to find extreme(+) puzzles?

I said above that I like to take the path of least resistance, but I guess it's a relative term. On second thought, I may need to make some adjustments even if they're not absolutely necessary for solving success. For example:

Last weekend I solved another Nightmare (Feb 3, 2008) which turned out to be the most difficult (7.9) of them I've encountered so far: 040000030200503004007000600030409050000010000090205040008000400500706008070000090. Still, I guess it wasn't nearly as difficult as my solve path would suggest.

My solution used 18 chains and nets, some of which were pretty complicated. I did enjoy hunting them, but it's hard to justify the complexity if I look at the Hoduko solution which used only 9 chains, none of which were very complicated.

I suspect my biggest leak was that I skipped fishing as always. Seems that I need to start paying attention to that if I want to simplify my solve paths. There are other leaks, of course, but that seems the most obvious and perhaps easiest to fix first.
-SpAce-: Show
Code: Select all
`   *             |    |               |    |    *        *        |=()=|    /  _  \    |=()=|               *            *    |    |   |-=( )=-|   |    |      *     *                     \  ¯  /                   *    `

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."

SpAce

Posts: 2672
Joined: 22 May 2017

### Re: Where to find extreme(+) puzzles?

What are those? I can find information about M-wings and L-wings you also mentioned but not those two.

in essence A.I.C / discontinuous/continuous Nice loops of 3/4 strong=weak links between 1-2 digits are classed and defined and finally named:

this post contains direct links for the other types i mentioned]

S-wing

the H-wing is used by a few people on here an a few other different forums and first appeared and was joking dubbed as a "purple cow" for us long timer {which is still displayed as such in xsudoku! }

Hybrid wings. {pattern defined but no developed thread with examples as it has way to many to display them all. }

H2-Wing: (X=Y)a - (Y)b = (Y-Z)c = (Z)d "a" and "d" in same unit; a<>Z, d<>X
H3-Wing: (X=Y)a - (Y=Z)b - (Z)c = (Z)d "a" and "d" in same unit; a<>Z, d<>X

Code: Select all
`.-----------------.-------------------.---------------------.| 1689  4    1569 | 1689  26789  1278 | 125789  3     12579 || 2     168  169  | 5     6789   3    | 1789    178   4     || 3     158  7    | 189   2489   1248 | 6       128   1259  |:-----------------+-------------------+---------------------:| 1678  3    126  | 4     678    9    | 1278    5     1267  || 4678  568  2456 | 368   1      78   | 2789    2678  23679 || 1678  9    16   | 2     3678   5    | 178     4     1367  |:-----------------+-------------------+---------------------:| 169   126  8    | 139   2359   12   | 4       1267  12567 || 5     12   49   | 7     49     6    | 3       12    8     || 146   7    3    | 18    2458   1248 | 125     9     1256  |'-----------------'-------------------'---------------------'`

basics to this point then:
Almost Locked Set XY-Wing: A=r3c24568 {124589}, B=r8c5 {49}, C=r1268c3 {14569}, X,Y=4,5, Z=9 => r12c5<>9
W-Wing: 1/2 in r7c6,r8c8 connected by 2 in r78c2 => r7c89<>1
Finned Swordfish: 8 r146 c157 fr1c4 fr1c6 => r23c5<>8
Locked Candidates Type 1 (Pointing): 6 in b1 => r2c5<>6
followed by easy steps brings it to here:
Code: Select all
`.----------------.-----------------.-------------------.| 189   4    159 | 6    28    128  | 12579  3    12579 || 2     168  169 | 5    7     3    | 19     18   4     || 3     158  7   | 189  249   1248 | 6      128  125   |:----------------+-----------------+-------------------:| 1678  3    126 | 4    68    9    | 1278   5    127   || 48    58   245 | 38   1     7    | 289    6    239   || 1678  9    16  | 2    368   5    | 178    4    137   |:----------------+-----------------+-------------------:| 169   126  8   | 139  2359  12   | 4      7    256   || 5     12   49  | 7    49    6    | 3      12   8     || 146   7    3   | 18   2458  1248 | 125    9    1256  |'----------------'-----------------'-------------------'`

Almost Locked Set XY-Wing: A=r1c156 {1289}, B=r23c8,r3c9 {1258}, C=r7c1269 {12569}, X,Y=5,9, Z=1,2 => r1c79<>1, r1c79,r3c56<>2
Almost Locked Set XY-Wing: A=r2c238 {1689}, B=r126c3 {1569}, C=r1c79,r2c7 {1579}, X,Y=1,5, Z=9 => r1c1,r8c3<>9
more basic steps:
Code: Select all
`.---------------.-------------.--------------.| 18    4   59  | 6   2    18 | 579   3  579 || 2     16  169 | 5   7    3  | 19    8  4   || 3     58  7   | 9   4    18 | 6     2  15  |:---------------+-------------+--------------:| 1678  3   126 | 4   68   9  | 1278  5  127 || 4     58  25  | 38  1    7  | 289   6  239 || 1678  9   16  | 2   368  5  | 178   4  137 |:---------------+-------------+--------------:| 9     16  8   | 13  35   2  | 4     7  56  || 5     2   4   | 7   9    6  | 3     1  8   || 16    7   3   | 18  58   4  | 25    9  256 |'---------------'-------------'--------------'`

Almost Locked Set XZ-Rule: A=r1246c3 {12569}, B=r12456c7 {125789}, X=5, Z=2 => r4c9<>2
Almost Locked Set XZ-Rule: A=r15c3 {259}, B=r134679c9 {1235679}, X=9, Z=2 => r5c9<>2

singles to the end.
Some do, some teach, the rest look it up.

StrmCkr

Posts: 1206
Joined: 05 September 2006

### Re: Where to find extreme(+) puzzles?

champagne wrote:
Here, we have an heavily downgraded form of potential exocet for the base r12c9 target r6c7 r7c8

1 in the base => 1r7c8
5 in the base => 5r6c7

if you can prove that 4 in the base => 4 (r6c7,r7c8) you have an exocet.

Junior exocet in the most common pattern to prove it and is there in most cases.
In other cases "classical AICs" can establish it

Using the [hidden] UR : r16c79 with {4,5} we see that r6c7 <> 4. So to have an exocet here, we would need to prove that 4 in the base => 4r7c8. Alas, there does not appear to be such a proof.
Can you suggest [or point to] a tough puzzle that contains a 'real' exocet that is not Junior?
David P Bird's compendium contains a section on the 'Senior Exocet'. You are suggesting a different type of extension where the base cells and target cells are in the same band but the 'S' cell requirement is not met.
The use of AICs in this situation suggests some commonalities with Krakens.
ghfick

Posts: 133
Joined: 06 April 2016

### Re: Where to find extreme(+) puzzles?

GF the 'Senior Exocet' variation described in the compendium allows target cells to be outside the base cell band. It can just about be classed as a recognisable pattern as it consists of a defninite number of elements that can be checked without needing to track chains. But Champagne's base cells and targets are all in the same band so it does not apply.

As Champagne is willing to accept inference tracking using chains or nets as a means of proving that a pattern exists, he has greater freedom to confirm the pattern is an Exocet.

Champagne, I hope that this contribution makes your life easier as it should save you from having to either read for the first time or revise the defintion of a Senior Exocet!

David
.
David P Bird
2010 Supporter

Posts: 1043
Joined: 16 September 2008
Location: Middle England

### Re: Where to find extreme(+) puzzles?

Thanks for the info, StrmCkr!
-SpAce-: Show
Code: Select all
`   *             |    |               |    |    *        *        |=()=|    /  _  \    |=()=|               *            *    |    |   |-=( )=-|   |    |      *     *                     \  ¯  /                   *    `

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."

SpAce

Posts: 2672
Joined: 22 May 2017

### Re: Where to find extreme(+) puzzles?

Back to where I started. I finally decided to face my original nemesis a third time and see if I'd learned anything in half a year. As told above, my very first attempt on that particular SE 8.4 puzzle failed miserably. As also told, my second attempt sort of solved it, but I wasn't at all happy about how it happened, so I never really counted it. It's been bugging me a bit, but I never looked at the puzzle again until now. Here's what I came up with (unedited p&p steps):

1. AIC (AHS): (6)r3c1 = r3c4 - r1c5 = (6-4)r4c5 = r8c5 - r7c4 = (41-6)r7c89 = (6)r8c9 => -6 r8c1
2. AIC-Loop (ANS, Grouped): (2)r8c4 = (2-4)r7c4 = r7c89 - (4=[9]2)r8c78 - loop => -35 r7c4, -2 r8c1; -9 r8c16, r7c89, r9c79
3. AIC: (2=7)r9c7 - (7=9)r3c7 - r8c7 = (9)r8c8 => -2 r8c8
4. AIC-Hydra (ANS): (#2)r4c8 = r7c8 - (2=94)r8c78 - (4)r8c5 = (#4-1|6)r4c5 = (61)r12c5 - (1=5)r2c9 - r6c9 = (#5)r6c7 => -4 r4c8, -2 r6c7
5. AIC-Hydra (AHS): (#5)r8c6 = (5-#2)r8c4 = (2-4)r7c4 = (41-3)r7c89 = r9c9 - (3=#8)r9c5 => -8 r8c46
6. AIC-Loop (Grouped): (8)r6c3 = r9c3 - (8=3)r8c8 - r79c3 = (3)r6c3 - loop => -2 r6c3; -3 r7c12, r9c2
7. AIC-Hydra: (#8)r4c4 = r6c4 - r6c3 = r9c3 - r9c5 = (8-4)r8c5 = (#4-6)r4c5 = r1c5 - (6=#3)r3c4 => -34 r4c4
8. Kite: (6)r3c1 = r3c4 - r1c5 = (6)r4c5 => -6 r4c1
9. AIC (ANS): (5=1)r2c9 - r2c5 = (1-6)r1c5 = (6-4)r4c5 = r8c5 - (4=92)r8c78 - (2=7)r9c7 - r9c9 = (7)r6c9 => -5 r6c9
10. Kraken Cell: (1378)r1c4 => -26 r1c2 (*a)
11. AIC: (7)r3c8 = r3c7 - (7=2)r9c7 - r7c8 = (2)r4c8 => -7 r4c8
12. Kraken Cell (Nested, ANS): (157)r5c6 => -7 r5c8 (*b)
13. AIC: (2=6)r1c3 - r1c5 = (6-4)r4c5 = r8c5 - (4=2)r7c4 => -2 r7c3
14. Kraken Cell (Grouped): (3467)r4c2 => +8 r6c3 (*c)
15. AIC: (6)r5c4 = r4c5 - (6=1)r1c5 - r1c7 = r4c7 - (1=4)r5c8 => -4 r5c4
16. AIC: (3)r2c5 = (3-6)r3c4 = (6-5)r5c4 = r8c4 - (5=3)r8c6 => -3 r8c5
17. Skyscraper: (6)r1c3 = r5c3 - r5c4 = (6)r3c4 => -6 r3c1, r1c5; stte

Details for (*a, *b, *c):
Hidden Text: Show
(*a)
Code: Select all
`r1c4:|(7)-r1c1==============(7)r1c2--|-(26)r1c2|(1)-r4c7=r1c7-r1c5==|(26)r1c35-||(3)-(3=6)r1c3-|r3c4=||(8)-(8=6)r4c4-|=> -26 r1c2`

(*b)
Code: Select all
`r5c6:|(7)-----------------------------------------------------------------------------|-(7)r5c8|(5)-r8c6=(5-2)r8c4=r8c7-(2=7)r9c7-r3c7=(7)r3c8----------------------------------||(1)-r5c1=|(7)-------------------------------------------------------------------|          |(6)-r3c1=r3c4-r1c5=(6-4)r4c5=r8c5-(4=92)r8c78-|(2=7)r9c7-r3c7=(7)r3c8-|          |(9)-r5c3=r9c3-(9=2)r9c2-----------------------|=> -7 r5c8`

(*c)
Code: Select all
`r4c2:|(3)-r6c3==========================================|=(8)r6c3|(4)-r4c5=(4-8)r8c5=r9c5-r9c3======================||(6)-r4c45=(6-5)r5c4=r8c4-(5=3)r8c6-(3=8)r9c5-r9c3=||(7)-r4c7=r9c7-(7=3)r9c9-(3=8)r9c5-r9c3============|=> +8 r6c3`

Looking back at my first two pathetic attempts (just found the notes and laughed)... yeah, I think I've learned something For that I can thank a lot of people here, mostly the same ones who kindly replied to this very first post of mine and gave tips on how to move forward. Still a lot to learn.

The one thing that hasn't changed, however, is the pencil&paper solving system I developed last year. It's been stable since October, and I can't think of any more improvements (to the core at least). I'm very happy with it, except for the slowness. That's why my next ambition would be to turn it into software, but we'll see if that ever happens. Until then I'm stuck with p&p. (I'm not principled about that at all -- I'd switch to computerized solving immediately if any program had the features I want, but none do.)

The puzzle (again):

000900030004700600081054002005000000000020308000090060000070800017000000400106050
-SpAce-: Show
Code: Select all
`   *             |    |               |    |    *        *        |=()=|    /  _  \    |=()=|               *            *    |    |   |-=( )=-|   |    |      *     *                     \  ¯  /                   *    `

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."

SpAce

Posts: 2672
Joined: 22 May 2017

### Re: Where to find extreme(+) puzzles?

With computerized solving do you mean: support for manual inputting logic?
What options should the program have and whats wrong with xsudo?
Maybe i can add some things to my solver.
creint

Posts: 271
Joined: 20 January 2018

### Re: Where to find extreme(+) puzzles?

creint wrote:With computerized solving do you mean: support for manual inputting logic?

I'm not quite sure what you mean by that. I haven't used Xsudo so I don't really know how it works in that.

What options should the program have?

What I really want is the same unique way of representing the candidate grid (+ some helper views) which I now draw by hand. Without it I wouldn't be able to solve harder puzzles, or at least it would be painful. In the playing mode I don't want any features that I wouldn't be able to do manually on paper, and I don't want it to make cheating too easy when stuck. In other words, I want it to provide tools for solving but not solve for me (unless I specifically ask for it, but then I'm no longer playing). For training, practicing, and post-game analysis the program should have other features as well -- but most what I want I already have in Hodoku, for example.

The main benefits of a software implementation of my system would be speed, better graphics, and automated syncing of multiple views. Reliability is not an issue, as I usually solve months without making a single mistake (and I do everything by hand, including basics).

and whats wrong with xsudo?

The first thing wrong with it is that it requires Windows, which is why I can't say much about else. I guess I could install it on a virtual box but I haven't been interested enough yet. It also seems to require a bit different solving philosophy, but that's not necessarily a bad thing. I think it might be especially good for solving or at least understanding some really difficult puzzles that aren't solvable with any "normal" methods. I don't think I'll be having such ambitions any time soon.

Maybe i can add some things to my solver.

Is your solver publicly available? I've understood from your other posts that it supports all kinds of sudoku variants, which is cool.
-SpAce-: Show
Code: Select all
`   *             |    |               |    |    *        *        |=()=|    /  _  \    |=()=|               *            *    |    |   |-=( )=-|   |    |      *     *                     \  ¯  /                   *    `

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."

SpAce

Posts: 2672
Joined: 22 May 2017

### Re: Where to find extreme(+) puzzles?

David P Bird wrote:GF the 'Senior Exocet' variation described in the compendium allows target cells to be outside the base cell band. It can just about be classed as a recognisable pattern as it consists of a defninite number of elements that can be checked without needing to track chains. But Champagne's base cells and targets are all in the same band so it does not apply.
David
.

Hi David,

I did not work on that topic for long, but the definition of an exoccet accepts the 2 cells in any place. At the very beginning, I explored all cells pairs. Later, when the JE appeared and lacking of interesting examples with cells outside the band, I concentrated on a band.

Later this year, I could restart some exploration on potential hardest with no known exotic pattern.
champagne
2017 Supporter

Posts: 7192
Joined: 02 August 2007
Location: France Brittany

### Re: Where to find extreme(+) puzzles?

Champagne,

You wrote:Later this year, I could restart some exploration on potential hardest with no known exotic pattern.

I look forward to seeing what you can find!

One area that might be worth exploring is Almost Multifish (or Almost MSLS), where the list of pattern elimination cells includes one false one. Sometimes, but not often, it is possible to adjust the cover sets to correct this. It would be interesting to see if you can identify which of the eliminations must be right. PJP is also interested in this and his solver uses some brute force checking to find them I believe.

David
.
David P Bird
2010 Supporter

Posts: 1043
Joined: 16 September 2008
Location: Middle England

### Re: Where to find extreme(+) puzzles?

Hi David,

I remember to have tried to combine several "rank 1" logic systems to produce a new exotic pattern, without succes at that time. Using a "rank 1" logic in a chain as some do with ALS is not a big problem, but following eleven's remarks, this is usually not a process that a manual player could apply.

We'll reopen the discussion in due time.
champagne
2017 Supporter

Posts: 7192
Joined: 02 August 2007
Location: France Brittany

### Re: Where to find extreme(+) puzzles?

Hi SpAce:
I hope it's useful for you.
Code: Select all
`         puz                                                                             skfr      Hodoku020000003400200800007080020100030500000005004006400080030001009005700060600090400   83/12/12   15996000000603400100000050002010100005700009800004025060090003000900200000030040200006   83/12/12   15708200600900085002006004050000000700009000004075030010400006080090040001200000300000   83/12/12   13768007005004300007600090300010004030200000100008070002060050060080630000100009500000   83/12/12   13510000600070060703009000000300080009050006280003400030800010020500200001900009800002   83/12/12   13062800100902000090070009005001020009800600070000050600007000006080300810006000050400   83/12/12   13044008003040000400006900028300006300007800005600050040090000050100200007009080900060   83/66/66   13042600000050008300100000020008520800060104070000009005002040700090900004600800000005   83/12/12   12540010000040002400006900068000070000004300000017005100800030004050004800601500010003   83/12/12   12508050007030002805009300040600006700004090000000500016070005008000070400100400000002   83/12/12   12494500800400308002005000030080060050100007100006002000070010500600200000004009003000   83/12/12   12470010200050008000700000006000006003200900070003005100080002007400000900300830020005   83/12/12   12318000004006005010400900700050100020900030000060007800000001200009060008040200007100   83/12/12   12300010200006009060100600003070200000009040600030003004800100000004000070300020400050   83/12/12   12250000004080090200007001070300100800900070040005009001060008405000010030000500006030   83/83/66   12222500008002008600300060050070800400006001005000070080200009001700000500090000090031   83/12/12   12156007002300060030070800500002004005030900000600000020001030600020008003500700010800   83/12/12   12136300000040000030200009200008013006900800900006060020010030107500700060000006005004   83/12/12   12120000400009080027010500000620090040000005106900800050002300010006002008050000200300   83/12/12   12104010080004700600010005001000003000400200007005000090080002000096078002000500070200   83/12/12   12082000008003600400080030062900400000000003010700080009010000007600500040030020300005   83/12/12   12070010600002009000060000070800030900400900050070008000006080006001004030500500700080   83/12/12   12018003500080000040005100008400300004000010020300007600050400700009080090200002001040   83/12/12   12014000090008090000300000004005406010000200005003000000070600700800010043060002500001   83/12/12   11958000080040400900008050002100020004500001500007000060080080006090100090200005700000   83/12/12   11948060070002500000400004300010000090600700002050080500007005000004090001020800060300   83/12/12   11936005090007600003090090000400060080003500600200007032050050007009400010000001200040   83/66/66   11930000008400400100005060000000020090500700005001508300000002060030600200100040009072   83/12/12   11920900000600007400001030020009100060007009000500070001900008003000020090004500600100   83/12/12   11912900500300000000026050003019300008004001000000040620030000004000060700050800060400   83/12/12   11874000800610400000200070003059003000005050004070000100300082000006010600090600070500   83/83/26   11810800700004090050000002008600007600003000010040900003800300200061020060400009400005   83/23/23   11776600000003040800600000067000009700200080005040400010006037100004000003050900070100   83/12/12   11770023000004500006900006100030000008000010070040032400700007000500200080000040003002   83/12/12   11758600009008001080000083400010200004030070090602009000001050007000002040090900300800   83/12/12   11710010005030900010500005700000300900010400008600080060004000009000030100040002057006   83/12/12   11662000000020070000006006502800040006009000800050000040100050900030002010090930004002   83/12/12   11642000008600009020001073600000406080000090001080200300005050000900900100002002030060   83/12/12   11638003000020060002007900060800090008004600940000007000100020700050006030002100005300   83/12/12   11632700060200010005030002300009030700800007000090800004700400080000006000300020400001   83/12/12   11618010700900500006008007040000300060800060009004009500020030200400200000085001008002   83/83/66   11612008500002000010090000003500503040000004700006000001070200006001000070300060100080   83/12/12   11600700100090001000400080050002040000030500080009003010700004600000000009203900020005   83/12/12   11578004800300050002008000050020080400009300006080000010600100060000000200075008004060   83/12/12   11524010006000009800000705010009040600300200001080006400001050008060600070900004100005   83/12/12   11516030008050700050006009200800070006020200100600005000074090000700500002000007900040   83/12/12   11512800009060094060000000200100020900080600008004007010300010030500500000000008000002   83/12/12   11478020800000000700006003060080002300508054002000900070300010007004200500000000010060   83/12/12   11464010000203000100700005260010030007000600010005004900070080000400400002030003080060   83/12/12   11452001006009000400700700090040006004002030500080000030400000009020020700004300010900   83/12/12   11450020060300000004008900200004000570006000002090002900100069020500300800000050003070   83/12/12   11434040600900001005002700010060006700400000000020002001009007090006900000080050800300   83/12/12   11430600090080050300000002800006003200017900000400070050800004900008000005600030080020   83/12/12   11418500080000008106900030000010400020300070800020005090001004900003000032070000000600   83/15/15   11414004090052800007060000400300000000040080005700009100006500006007060008010001020000   83/12/12   11412900100600002006009000070040200007008009010006080900200605000003000031000030000070   83/12/12   11400700090005000003700090000060500800010020076000004001003300060800050008004001500000   83/12/12   11400004008050900070006070300800600000030040010900000204008007000001000100090100096400   83/12/12   11370900000007000001080804500600001000000402003090090400003040090706000600000100007200   83/20/20   11368004090000800002050020600100003204000700100004040070290009003060000060500000700000   83/12/12   11354000090020090400008005001600003050000050002003206010050040000080100700004009000200   83/12/12   11354040090010009008300500300008002040006900501800080600070006000700400060000090003001   83/12/12   11328000900050080012600006007002090000003300090100002003070000600800070004090100000004   83/67/34   11316900040300007003059000000002200006100050210080009000003700068000030090004002400000   83/12/12   11314008500100010003070500080024100000200060030007004800060000005700700060009090400050   83/32/32   11308005070002000001900700400050000100020001040003090006800500014030060080000008200005   83/12/12   11280000900008000040000002001940600020700000400005008003060540008200007000010090100007   83/12/12   11274010009004003100200240080000700005060020000003009000500050700600600003000001200007   83/12/12   11264600019700009006004080000000000008900804900006000070020008030001032000080900001300   83/12/12   11260030600050400009006107000800250060000000008004009750060500900080004000900000030007   83/12/12   11256001300000000007040800040200000050003200100050009200700030005070100090002002600800   83/12/12   11234005010007010007200000500030070009020024300900500400003100004000030005012007100006   83/12/12   11232030006005006010030100200400090000000500040009008005160003060000400300008080002070   83/12/12   11214005000090100005400090000007006002005400600080008010700003400006040000070700230900   83/12/12   11200040600000006004009700080000003000200010300040800020005000030020001900800900071003   83/12/12   11198004090700030006010900100000200004060009000200170300004020041500800000000001700030   83/12/12   11194000008003006100050500000400002009040040030500800000002070800010000060000009001307   83/12/12   11194600000040090040000004102500010090000800003100073200005008001004030900080900020300   83/12/12   11186030008020002000001600050300040500070009806005500040900007004000300060080050080007   83/12/12   11182200801040000000002090200000080907050900000003400000800005003400040500080600020005   83/12/12   11164000800340800010009000006000037000401040002080000500000009100508050080004700003000   83/12/12   11156030007600600030041001000090050008020009040003300000700020000000003500900100060200   83/12/12   11154005070010000003002080100700700004800090600300004000005400001000008030900030500006   83/77/77   11148005060900600504003800002010700005020002800004060000300009001000070000030200070400   83/12/12   11140500007093000000004001600700400010300000800070062005000200080010090000200010400006   83/67/26   11118000400000000020700005000028060900000100060400007008002800003001050700060001002900   83/12/12   11102005007016090010000100300007008020030700900008040000600200400900076009001000060000   83/12/12   11070400008002010034000000900030090600500800309000000000008080040010005700006600001200   83/12/12   11054000600980004020100600000004200000010030009500006010008000900602008060050700003000   83/12/12   11050700800006054010700000000030005700020000006000800040007200030069010000500009008004   83/12/12   11028001307040000000100060400007003800006000150090080004000050009002700080000009500060   83/12/12   11008000009004000010089006300100100005000020630000007020500060200900800000020001050003   83/12/12   11004`
yzfwsf

Posts: 337
Joined: 16 April 2019

Previous