Reason for asking: I did a 4-star Sudoku here and got stuck
https://www.sudokuonline.nl/
- Code: Select all
418..9.......5.......4..3.9..38...6..9....1....2..3.......31..5.3..257.46....4...
418..9.......5.......4..3.9..38...6..9....1....2..3.......31..5.3..257.46....4...
evert wrote: I did a 4-star Sudoku here and got stuck
https://www.sudokuonline.nl/
- Code: Select all
418..9.......5.......4..3.9..38...6..9....1....2..3.......31..5.3..257.46....4...
Resolution state after Singles:
+----------------------+----------------------+----------------------+
! 4 1 8 ! 3 67 9 ! 25 257 267 !
! 3 267 9 ! 127 5 2678 ! 248 12478 12678 !
! 257 2567 567 ! 4 167 2678 ! 3 12578 9 !
+----------------------+----------------------+----------------------+
! 157 457 3 ! 8 1479 27 ! 2459 6 27 !
! 578 9 4567 ! 257 467 267 ! 1 234578 2378 !
! 1578 45678 2 ! 1579 14679 3 ! 4589 45789 78 !
+----------------------+----------------------+----------------------+
! 2789 2478 47 ! 79 3 1 ! 6 289 5 !
! 89 3 1 ! 6 2 5 ! 7 89 4 !
! 6 257 57 ! 79 8 4 ! 29 1239 123 !
+----------------------+----------------------+----------------------+
163 candidates, 905 csp-links and 905 links. Density = 6.85%
whip[1]: c5n9{r6 .} ==> r6c4≠9
whip[1]: r1n2{c9 .} ==> r3c8≠2, r2c7≠2, r2c8≠2, r2c9≠2
whip[1]: r1n5{c8 .} ==> r3c8≠5
whip[1]: b9n8{r8c8 .} ==> r6c8≠8, r2c8≠8, r3c8≠8, r5c8≠8
hidden-single-in-a-row ==> r3c6=8
whip[1]: r3n2{c2 .} ==> r2c2≠2
whip[1]: b8n7{r9c4 .} ==> r6c4≠7, r2c4≠7, r5c4≠7
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 4 1 8 ! 3 67 9 ! 25 257 267 !
! 3 67 9 ! 12 5 267 ! 48 147 1678 !
! 257 2567 567 ! 4 167 8 ! 3 17 9 !
+-------------------+-------------------+-------------------+
! 157 457 3 ! 8 1479 27 ! 2459 6 27 !
! 578 9 4567 ! 25 467 267 ! 1 23457 2378 !
! 1578 45678 2 ! 15 14679 3 ! 4589 4579 78 !
+-------------------+-------------------+-------------------+
! 2789 2478 47 ! 79 3 1 ! 6 289 5 !
! 89 3 1 ! 6 2 5 ! 7 89 4 !
! 6 257 57 ! 79 8 4 ! 29 1239 123 !
+-------------------+-------------------+-------------------+
144 candidates.
naked-pairs-in-a-row: r4{c6 c9}{n2 n7} ==> r4c7≠2, r4c5≠7, r4c2≠7, r4c1≠7
hidden-pairs-in-a-row: r9{n1 n3}{c8 c9} ==> r9c9≠2, r9c8≠9, r9c8≠2
finned-x-wing-in-rows: n6{r6 r3}{c5 c2} ==> r2c2≠6
naked-single ==> r2c2=7
whip[1]: c6n7{r5 .} ==> r5c5≠7, r6c5≠7
whip[1]: b1n6{r3c3 .} ==> r3c5≠6
biv-chain[3]: r1n6{c9 c5} - r2c6{n6 n2} - r4n2{c6 c9} ==> r1c9≠2
whip[1]: c9n2{r5 .} ==> r5c8≠2
naked-pairs-in-a-row: r1{c5 c9}{n6 n7} ==> r1c8≠7
biv-chain[3]: r7n4{c3 c2} - c2n8{r7 r6} - b4n6{r6c2 r5c3} ==> r5c3≠4
hidden-single-in-a-column ==> r7c3=4
biv-chain[3]: c2n4{r4 r6} - r6n6{c2 c5} - b5n9{r6c5 r4c5} ==> r4c5≠4
biv-chain[3]: b4n6{r6c2 r5c3} - c3n7{r5 r9} - b7n5{r9c3 r9c2} ==> r6c2≠5
z-chain[3]: r9c2{n5 n2} - c1n2{r7 r3} - c1n5{r3 .} ==> r4c2≠5
naked-single ==> r4c2=4
hidden-pairs-in-a-column: c7{n4 n8}{r2 r6} ==> r6c7≠9, r6c7≠5
biv-chain[3]: r4c7{n5 n9} - r4c5{n9 n1} - r6c4{n1 n5} ==> r6c8≠5
biv-chain[4]: r8c1{n9 n8} - c2n8{r7 r6} - r6n6{c2 c5} - r6n9{c5 c8} ==> r8c8≠9
singles ==> r8c8=8, r8c1=9
biv-chain[4]: r6c2{n6 n8} - r7c2{n8 n2} - r7c8{n2 n9} - r6n9{c8 c5} ==> r6c5≠6
singles ==> r6c2=6, r3c3=6, r7c2=8
biv-chain[3]: r5c4{n2 n5} - r5c3{n5 n7} - c6n7{r5 r4} ==> r4c6≠2
singles ==> r4c6=7, r4c9=2
biv-chain[4]: c8n5{r5 r1} - c8n2{r1 r7} - r7c1{n2 n7} - c3n7{r9 r5} ==> r5c3≠5, r5c8≠7
stte
Hidden Single: r1c4=3
Hidden Single: r2c1=3
Hidden Single: r8c4=6
Hidden Single: r7c7=6
Hidden Single: r9c5=8
Hidden Single: r2c3=9
Naked Single: r8c3=1
Locked Candidates Type 1 (Pointing): 5 in b1 => r3c8<>5
Locked Candidates Type 1 (Pointing): 7 in b8 => r256c4<>7
Locked Candidates Type 1 (Pointing): 9 in b8 => r6c4<>9
Locked Candidates Type 1 (Pointing): 8 in b9 => r2356c8<>8
Hidden Single: r3c6=8
Locked Candidates Type 1 (Pointing): 2 in b2 => r2c2789<>2
Locked Candidates Type 1 (Pointing): 2 in b1 => r3c8<>2
Naked Pair: 2,7 in r4c69 => r4c125<>7, r4c7<>2
Naked Triple: 2,8,9 in r78c8,r9c7 => r9c89<>2, r9c8<>9
Skyscraper: 6 in r2c6,r3c3 (connected by r5c36) => r2c2,r3c5<>6
Naked Single: r2c2=7
Locked Candidates Type 1 (Pointing): 7 in b2 => r56c5<>7
AIC: 4 4- r4c2 -5- r9c2 =5= r9c3 -5- r3c3 -6- r3c2 =6= r6c2 =8= r7c2 =4= r7c3 -4 => r5c3,r7c2<>4
Hidden Single: r7c3=4
Discontinuous Nice Loop: 2 r1c9 -2- r4c9 =2= r4c6 -2- r2c6 -6- r2c9 =6= r1c9 => r1c9<>2
Locked Candidates Type 2 (Claiming): 2 in c9 => r5c8<>2
Naked Pair: 6,7 in r1c59 => r1c8<>7
Discontinuous Nice Loop: 5 r4c2 -5- r9c2 =5= r9c3 =7= r5c3 =6= r6c2 =4= r4c2 => r4c2<>5
Naked Single: r4c2=4
Naked Triple: 2,5,9 in r149c7 => r6c7<>5, r6c7<>9
XY-Wing: 1/9/5 in r4c57,r6c4 => r6c8<>5
XY-Chain: 2 2- r3c1 -5- r4c1 -1- r4c5 -9- r4c7 -5- r1c7 -2- r9c7 -9- r9c4 -7- r9c3 -5- r9c2 -2 => r3c2,r7c1<>2
Hidden Single: r3c1=2
Locked Candidates Type 2 (Claiming): 5 in c1 => r5c3,r6c2<>5
XY-Wing: 6/8/7 in r5c3,r6c29 => r5c89,r6c1<>7
Locked Candidates Type 1 (Pointing): 7 in b4 => r5c6<>7
Hidden Single: r4c6=7
Naked Single: r4c9=2
XY-Chain: 1 1- r4c1 -5- r4c7 -9- r9c7 -2- r9c2 -5- r9c3 -7- r5c3 -6- r5c6 -2- r5c4 -5- r6c4 -1 => r4c5,r6c1<>1
stte
Hidden Single: 6 in b9 => r7c7=6
Hidden Single: 6 in b8 => r8c4=6
Hidden Single: 8 in b8 => r9c5=8
Hidden Single: 3 in b1 => r2c1=3
Hidden Single: 3 in b2 => r1c4=3
Hidden Single: 9 in b1 => r2c3=9
Naked Single: r8c3=1
Locked Candidates 2 (Claiming): 2 in r1 => r2c7<>2,r2c8<>2,r2c9<>2,r3c8<>2
Locked Candidates 2 (Claiming): 5 in r1 => r3c8<>5
Locked Candidates 1 (Pointing): 7 in b8 => r2c4<>7,r5c4<>7,r6c4<>7
Locked Candidates 1 (Pointing): 9 in b8 => r6c4<>9
Locked Candidates 1 (Pointing): 8 in b9 => r2c8<>8,r3c8<>8,r5c8<>8,r6c8<>8
Hidden Single: 8 in r3 => r3c6=8
Locked Candidates 1 (Pointing): 2 in b2 => r2c2<>2
Naked Pair: in r4c6,r4c9 => r4c1<>7,r4c2<>7,r4c5<>7,r4c7<>2,
Hidden Pair: 13 in r9c8,r9c9 => r9c8<>29,r9c9<>2
Skyscraper : 6 in r2c6,r3c3 connected by r5c36 => r2c2,r3c5 <> 6
Naked Single: r2c2=7
Locked Candidates 1 (Pointing): 7 in b2 => r5c5<>7,r6c5<>7
Uniqueness Test 7: 27 in r45c69; 2*biCell + 1*conjugate pairs(7c6) => r5c9 <> 2
Uniqueness Test 7: 89 in r78c18; 2*biCell + 1*conjugate pairs(8c8) => r7c1 <> 9
Hidden Single: 9 in b7 => r8c1=9
Full House: r8c8=8
Discontinuous Nice Loop: 7r4c6 = (7-2)r4c9 = (2-6)r1c9 = r1c5 - r2c6 = (6-7)r5c6 = 7r4c6 => r4c6=7
Hidden Single: 2 in r4 => r4c9=2
Naked Pair: in r1c5,r1c9 => r1c8<>7,
Discontinuous Nice Loop: 4r7c3 = (4-8)r7c2 = (8-6)r6c2 = (6-4)r5c3 = 4r7c3 => r7c3=4
Discontinuous Nice Loop: 4r4c2 = (4-6)r6c2 = r3c2 - (6=5)r3c3 - r9c3 = r9c2 - (5=4)r4c2 => r4c2=4
Hidden Pair: 48 in r2c7,r6c7 => r6c7<>59
XY-Wing: 159 in r4c5 r4c7 r6c4 => r6c8 <> 5
XY-Chain: (2=5)r3c1 - (5=1)r4c1 - (1=9)r4c5 - (9=5)r4c7 - (5=2)r1c7 - (2=9)r9c7 - (9=7)r9c4 - (7=5)r9c3 - (5=2)r9c2 => r3c2,r7c1<>2
Hidden Single: 2 in b1 => r3c1=2
Locked Candidates 2 (Claiming): 5 in c1 => r6c2<>5,r5c3<>5
W-Wing: 78 in r6c9,r7c1 connected by 8r5 => r6c1<>7
Locked Candidates 1 (Pointing): 7 in b4 => r5c8<>7,r5c9<>7
XY-Chain: (5=9)r4c7 - (9=1)r4c5 - (1=5)r6c4 - (5=2)r5c4 - (2=6)r5c6 - (6=7)r5c3 - (7=5)r9c3 - (5=2)r9c2 - (2=9)r9c7 - (9=2)r7c8 - (2=5)r1c8 => r1c7,r5c8<>5
stte
ghfick wrote:YZF_Sudoku now contains ... a collection of techniques being called Memory Chains..
ghfick wrote:Stormdoku is written in Turbo Pascal and has been designed for MSWindow OS's. I do not have a machine with MSWIndows so I have not used Stormdoku myself. My programming skills are very modest but I understand that those with better skills than me could, in principle, set up Stormdoku on machines with either Mac or Linux.
Ubuntu - WineHQ binary packages for Ubuntu 18.04, 20.04, 22.04, and 22.10
Debian - WineHQ binary packages for Debian Bullseye and Bookworm
Fedora - WineHQ binary packages for Fedora 36 and 37
macOS - WineHQ binary packages for macOS 10.8 through 10.14
denis_berthier wrote:ghfick wrote:NO. Nothing written for Windows can run on a recent Mac.