variants with SE 12.x

For fans of Killer Sudoku, Samurai Sudoku and other variants

variants with SE 12.x

Postby urhegyi » Thu Mar 17, 2022 8:57 pm

Image
latest available version of sudoku explainer(2022.1.4) rates this as follows:
Code: Select all
.........7.......5.............4.....8..5..23....1.............2.......6......... 111113222117133322717633322777636325787666525784646555884446595884449599888499999 ED=12.3/12.3/2.8
Last edited by urhegyi on Fri Mar 18, 2022 4:26 pm, edited 7 times in total.
urhegyi
 
Posts: 616
Joined: 13 April 2020

Re: variants with SE 12.x

Postby Hajime » Sat Mar 19, 2022 9:25 am

Some post are deleted from this topic, while I was busy solving 2 puzzles

The first puzzle with a r5c1=6
Code: Select all
#1/X/B4,JS
.........7.......5.............4....68..5..23....1.............2.......6.........
111113222117133322717633322777636325787666525784646555884446595884449599888499999

SiSeSuSo can solve this with Nested Forcing Nets in about 3 minutes.
This means a Forcing Net (or dynamic forcing chain?) within another Forcing Net
I think this is also T&E(2) .
Recently in http://forum.enjoysudoku.com/the-hardest-sudokus-new-thread-t6539-1048.html a new vanilla puzzle was discovered that could not be solved with T&E(2).
Also SiSeSuSo could not solve this "Loki" or "Thor's hammer" with Nested Forcing Nets (depth 2).
But It could with Nested Forcing Nets (depth 3). Just put a 2 into the Settings page of SiSeSuSo (it counts from 0,1,2).

Also your 2nd puzzle without a 6 in r5c1 is solvable with Nested Forcing Nets (depth 3) in 6 minutes. No need for BruteForce/BackTrack
Code: Select all
#1/X/B4,JS
.........7.......5.............4.....8..5..23....1.............2.......6.........
111113222117133322717633322777636325787666525784646555884446595884449599888499999

How long did it take you to rate this puzzle with sudoku explainer(2022.1.4) ?
User avatar
Hajime
 
Posts: 1022
Joined: 20 April 2018
Location: Netherlands

Re: variants with SE 12.x

Postby urhegyi » Sun Mar 20, 2022 7:34 am

In the left column I have 11 clue not minimal JSX with this layout:
Edit: Left column ending with X seems to be already minimal
Code: Select all
111113222117133322717633322777636325787666525784646555884446595884449599888499999

In the right column minimal forms with some clues removed will be added when processed.
They seem all to have extremely high ratings, some of them even with nested forcing chains up to depth 3.
Code: Select all
.........7.......5.............4....68..5..23....1.............2.......6......... ED=11.5/11.5/2.8 .........7.......5.............4.....8..5..23....1.............2.......6......... ED=12.3/12.3/2.8
.........1.......2.............4....93..1..76....5.............8.......1......... ED=12.0/12.0/2.8 .........1.......2.............4....93.....76....5.............8.......1......... ED=12.3/12.3/2.9
.........1.......2.............4....93..8..76....5.............8.......9......... ED=11.6/11.6/2.9 .........1.......2.............4.....3..8..76....5.............8.......9......... ED=12.0/12.0/2.9
.........1.......2.............4....91..2..76....5.............8.......4......... ED=12.0/12.0/2.8 .........1.......2.............4....93..8..7.....5.............8.......9......... ED=12.1/12.1/2.9
.........1.......2.............4....91..8..76....5.............8.......7......... ED=12.2/12.2/2.8 .........1.......2..................91..2..76....5.............8.......4......... ED=12.4/12.4/2.8
.........1.......2.............4....91..2..76....5.............8.......7......... ED=12.2/12.2/2.8 .........1.......2.............4....9...2..76....5.............8.......4......... ED=12.3/12.3/2.8
.........1.......2.............4....91..2..76....5.............8.......5......... ED=12.0/2.8/2.8  .........1.......2.............4....9...8..76....5.............8.......7......... ED=12.5/12.5/2.8
.........1.......2.............8....92..4..76....5.............8.......7......... ED=11.8/11.8/2.8X.........1.......2.............4....91..2...6....5.............8.......7......... ED=12.5/12.5/2.8
.........1.......2.............8....92..4..76....5.............8.......3......... ED=11.4/11.4/2.8 .........1.......2.............4....9...2..76....5.............8.......5......... ED=12.3/2.8/2.8
.........1.......2.............2....94..8..76....5.............8.......7......... ED=11.5/11.5/2.8 .........1.......2.............8.....2..4..76....5.............8.......3......... ED=12.0/12.0/2.8
.........1.......2.............1....94..8..76....5.............8.......7......... ED=12.0/2.8/2.8  .........1.......2.............8....9...4..76....5.............8.......3......... ED=12.0/12.0/2.8
.........1.......2.............3....94..6..78....5.............8.......6......... ED=11.2/11.2/2.8 .........1.......2.............8....92.....76....5.............8.......3......... ED=12.0/12.0/2.8
.........1.......2.............3....94..1..78....5.............8.......1......... ED=11.4/11.4/2.8 .........1.......2.............8....92..4..76..................8.......3......... ED=12.0/12.0/2.8
.........1.......2.............3....92..6..78....5.............8.......7......... ED=11.9/11.9/2.8 .........1.......2.............2....94.....76....5.............8.......7......... ED=11.9/11.9/2.8
.........1.......2.............1....93..6..78....5.............8.......5......... ED=12.0/2.8/2.8
.........1.......2.............6....93..2..71....5.............8.......4......... ED=11.5/11.5/2.9
.........1.......2.............6....92..4..71....5.............8.......5......... ED=11.3/2.8/2.8
.........1.......2.............6....92..8..71....5.............8.......4......... ED=11.6/11.6/2.8
.........1.......2.............8....94..6..71....5.............8.......7......... ED=11.1/11.1/2.8
.........5.......3.............8....95..7..26....3.............1.......9......... ED=11.1/11.1/2.8
.........5.......7.............8....94..3..21....5.............1.......3......... ED=11.2/11.2/2.8
.........5.......7.............8....97..3..24....5.............1.......3......... ED=11.2/11.2/2.8
.........5.......8.............8....94..6..27....5.............1.......3......... ED=11.5/11.5/2.8
.........5.......7.............8....94..6..21....5.............1.......3......... ED=11.8/11.8/2.8
.........5.......4.............8....95..4..27....1.............1.......3......... ED=11.5/11.5/2.8
.........5.......1.............8....94..1..26....3.............1.......3......... ED=11.9/2.8/2.8
.........5.......9.............8....94..6..21....7.............1.......3......... ED=11.8/11.8/2.9
.........5.......9.............8....94..5..26....7.............1.......3......... ED=11.2/11.2/2.8
.........3.......1.............3....86..1..95....7.............1.......2......... ED=11.9/2.8/2.8
.........5.......2.............3....86..1..97....5.............1.......9......... ED=12.0/12.0/2.8 .........5.......2.............3....86..1..97..................1.......9......... ED=12.4/12.4/2.8
.........8.......3.............8....79..2..61....5.............6.......7......... ED=11.3/2.8/2.8  .........5.......2.............3....86..1...7....5.............1.......9......... ED=12.3/12.3/2.8
.........8.......3.............7....39..2..61....5.............4.......7......... ED=11.8/11.8/2.8
.........8.......3.............7....38..2..61....5.............4.......7......... ED=12.0/12.0/2.8 .........8.......3..................38..2..61....5.............4.......7......... ED=12.4/12.4/2.8
.........8.......3.............9....38..2..61....5.............6.......7......... ED=11.9/11.9/2.8
.........8.......3.............7....94..2..61....5.............5.......7......... ED=11.4/11.4/2.8
.........8.......3.............4....58..2..61....3.............6.......7......... ED=11.8/11.8/2.8
.........8.......3.............9....54..2..61....3.............6.......7......... ED=11.4/11.4/2.8
.........8.......3.............8....39..2..61....7.............5.......7......... ED=12.0/2.8/2.8
.........9.......7.............2....71..9..68....3.............4.......2......... ED=11.2/11.2/2.8
.........9.......7.............2....71..9..65....3.............4.......9......... ED=11.4/11.4/2.8
.........9.......7.............2....18..5..64....9.............4.......6......... ED=12.0/12.0/2.8 .........9.......7.............2....18..5..64..................4.......6......... ED=12.4/12.4/2.8
.........5.......7.............9....26..5..34....8.............3.......9......... ED=11.2/11.2/2.8
.........5.......3.............6....84..3..92....1.............9.......8......... ED=11.5/11.5/2.8
urhegyi
 
Posts: 616
Joined: 13 April 2020

Re: variants with SE 12.x

Postby urhegyi » Wed Mar 30, 2022 5:49 pm

Conclusion of this generating approach for non-minimal 11 clue jsx with this
Code: Select all
111113222117133322717633322777636325787666525784646555884446595884449599888499999
layout:
1)
Code: Select all
.........1.......2.............4....91..8..76....5.............8.......7......... ED=12.2/12.2/2.8

2)
Code: Select all
.........1.......2.............4....91..2..76....5.............8.......7......... ED=12.2/12.2/2.8

3)
Code: Select all
.8....35...........3.....6.............................7.....3...........45...21. ED=12.2/12.2/2.8

Remove a given to get a 10 clue minimal jsx.
Rating will be higher.
1)
Code: Select all
.........1.......2.............4....9...8..76....5.............8.......7......... ED=12.5/12.5/2.8

2)
Code: Select all
.........1.......2.............4....91..2...6....5.............8.......7......... ED=12.5/12.5/2.8

3)
Code: Select all
.8....3............3.....6.............................7.....3...........45...21. ED=12.5/12.5/2.8

Using the same solution grid as the last 10 clue minimal example I got this 11 clue minimal example with the same high rating:
4)
Code: Select all
.86...35...........3.....6.............................7.....3...........4....21. ED=12.5/12.5/2.8
urhegyi
 
Posts: 616
Joined: 13 April 2020

Re: variants with SE 12.x

Postby urhegyi » Fri Apr 01, 2022 10:51 am

With the same generator I found 9 new 9 clues JSX with the last layout by reducing them from 10 clues:
They are now beeing rated.

Code: Select all
111113222117133322717633322777636325787666525784646555884446595884449599888499999

Code: Select all
......4............3.....8.............................2.....7...........61...85. ED=11.9/11.9/2.8
.1....6............9...................................2.....7...........36...84. ED=11.8/11.8/2.8
.1....6............9.....3.............................2.....7............6...84. ED=11.6/11.6/2.8
......8............1.....2.............................7.....6...........48...93. ED=12.1/12.1/2.8
.9....8............1.....2.............................7.....6...........48....3. ED=11.8/11.8/2.8
.6....4............5.....7...................................9...........18...72. ED=10.6/10.6/2.8
......4............5.....6.............................3.....9...........15...72. ED=12.3/12.3/2.8
.6....4............5.....6.............................3.....9...........1....72. ED=12.0/12.0/2.8
......6............5.....7.............................7.....8...........14...39. ED=11.4/11.4/2.8
urhegyi
 
Posts: 616
Joined: 13 April 2020

Re: variants with SE 12.x

Postby urhegyi » Mon Apr 04, 2022 6:23 am

a few more 9 clue JSX with the same layout:
Code: Select all
................7..3...9......3...................4......1...2..8.............5.. ED=11.9/11.9/2.8
................7..4...5......8...................2......1...2..9.............3.. ED=12.1/12.1/2.8
................5..4...3......8...................2......1...7..6.............3.. ED=12.2/12.2/2.8
................3..4...9......8...................2......1...7..6.............3.. ED=10.8/6.6/2.8
................1..9...4......9...................5......2...8..7.............6.. ED=11.9/11.9/2.8
................1..9...5......7...................2......2...8..3.............4.. ED=11.4/11.4/2.8
urhegyi
 
Posts: 616
Joined: 13 April 2020

Re: variants with SE 12.x

Postby urhegyi » Mon Apr 04, 2022 1:20 pm

a few more 8 clue JSX with the same layout:
Code: Select all
........95..........3...6......2....................8.............4......1....... ED=11.9/1.9/1.9
........95..........3...6......2....................8......7.............1....... ED=11.2/1.9/1.9
.......8.5..........7..............1...............2.......9......6......3....... ED=12.1/1.9/1.9
.......7.8..........9..............3...............6.......4......1......5....... ED=12.1/1.9/1.9
.......8.5.........................1....9..........2.......7......6......3....... ED=12.1/12.1/2.8
..........3..........1...........6...4.........8...........7..........2....9..... ED=12.0/8.9/2.8
..........3..........6...........4...1.....2...9...........8...............7..... ED=11.5/8.2/2.8
..........5..........2...........6...4.....1...8...........7...............9..... ED=11.5/8.2/2.8
Last edited by urhegyi on Thu Apr 07, 2022 9:09 pm, edited 12 times in total.
urhegyi
 
Posts: 616
Joined: 13 April 2020

Re: variants with SE 12.x

Postby Hajime » Mon Apr 04, 2022 3:22 pm

Nice found. Less givens is not possible.
User avatar
Hajime
 
Posts: 1022
Joined: 20 April 2018
Location: Netherlands

Re: variants with SE 12.x

Postby urhegyi » Mon Apr 11, 2022 4:44 pm

a few more 9 clue updates:
Code: Select all
..9...6.......8..........1.....5...................7............2.4.......1...... ED=12.1/12.1/2.8
..1...4.......6..........7.....8...................9............3.8.......5...... ED=12.4/12.4/2.8
..1...4.......6..........9.....2...................9............3.8.......5...... ED=12.3/12.3/2.8
..1...4.......6..........5.....2...................9............3.8.......5...... ED=12.1/12.1/2.8
.......................2...4..........96.35..7...........9.8..................... ED=12.0/11.5/2.8
urhegyi
 
Posts: 616
Joined: 13 April 2020

Re: variants with SE 12.x

Postby urhegyi » Thu Apr 21, 2022 6:15 am

after a long time another 8 clue example with the same JSX layout:
Code: Select all
.............6..............7.......3......45.......1..............8........2.... 111113222117133322717633322777636325787666525784646555884446595884449599888499999 JSX ED=12.6/12.6/2.8

Image
Finally the hardest minimal JSX with digits 1to8 only once(R5C5=9 missing).
solvepath:
Hidden Text: Show
Code: Select all
2.8, Claiming: Cells R1C8,R2C8,R3C8,R4C8: 2 in column and jigsaw
2.8, Claiming: Cells R4C9,R6C9,R7C9: 2 in column and jigsaw
2.8, Claiming: Cells R2C7,R3C7,R4C7: 2 in column and jigsaw
2.8, Claiming: Cells R4C6,R5C6,R6C6,R7C6: 2 in column and jigsaw
7.9, Nishio Forcing Chain: R6C1.2 on ==> R8C2.2 both on & off
7.9, Nishio Forcing Chain: R7C3.2 on ==> R4C1.2 both on & off
7.9, Nishio Forcing Chain: R3C2.2 on ==> R2C8.2 both on & off
8.0, Nishio Forcing Chain: R2C4.4 on ==> R7C6.4 both on & off
9.3, Contradiction Forcing Chain: R6C3.2 on ==> R2C2.2 both on & off
9.4, Double Forcing Chain: R2C7.8 on & off ==> R4C6.8 off
9.4, Double Forcing Chain: R8C3.6 on & off ==> R6C4.6 off
9.5, Contradiction Forcing Chain: R8C6.6 on ==> R7C9.6 both on & off
9.5, Contradiction Forcing Chain: R9C6.6 on ==> R7C9.6 both on & off
2.8, Claiming: Cells R4C6,R5C6,R6C6,R7C6: 6 in column and jigsaw
9.5, Contradiction Forcing Chain: R1C4.8 on ==> R5C3.8 both on & off
9.5, Contradiction Forcing Chain: R2C4.8 on ==> R5C3.8 both on & off
2.8, Claiming: Cells R3C4,R4C4,R5C4,R6C4: 8 in column and jigsaw
9.6, Region Forcing Chains: 7 in jigsaw ==> R3C4.7 off
9.6, Contradiction Forcing Chain: R3C7.7 on ==> R8C8.7 both on & off
9.6, Contradiction Forcing Chain: R3C7.3 on ==> R8C6.3 both on & off
9.7, Contradiction Forcing Chain: R4C5.4 on ==> R9C4.4 both on & off
9.7, Contradiction Forcing Chain: R1C4.4 on ==> R7C5.4 both on & off
9.6, Region Forcing Chains: 4 in diagonal(/) ==> R7C6.4 off
9.7, Region Forcing Chains: 4 in column ==> R8C3.4 off
9.7, Contradiction Forcing Chain: R7C3.1 on ==> R5C6.1 both on & off
9.7, Contradiction Forcing Chain: R1C5.1 on ==> R7C2.1 both on & off
9.7, Contradiction Forcing Chain: R6C6.4 on ==> R7C1.4 both on & off
9.8, Contradiction Forcing Chain: R4C7.3 on ==> R3C4.3 both on & off
9.8, Contradiction Forcing Chain: R3C7.5 on ==> R6C1.5 both on & off
10.9, Contradiction Forcing Chain: R2C4.5 on ==> R7C2.5 both on & off
9.8, Contradiction Forcing Chain: R6C3.5 on ==> R2C7.5 both on & off
11.0, Contradiction Forcing Chain: R9C3.4 on ==> R4C4.4 both on & off
9.7, Contradiction Forcing Chain: R6C1.4 on ==> R4C6.4 both on & off
11.4, Contradiction Forcing Chain: R7C6.3 on ==> R8C2.3 both on & off
11.5, Region Forcing Chains: 5 in diagonal(/) ==> R3C4.5 off
11.6, Region Forcing Chains: 3 in column ==> R4C5.3 off
11.6, Region Forcing Chains: 5 in jigsaw ==> R6C5.5 off
12.2, Contradiction Forcing Chain: R7C1.5 on ==> R9C9.4 both on & off
12.2, Contradiction Forcing Chain: R7C9.6 on ==> R2C2.5 both on & off
12.4, Contradiction Forcing Chain: R1C6.3 on ==> R3C1.9 both on & off
12.4, Contradiction Forcing Chain: R3C6.4 on ==> R1C3.7 both on & off
12.4, Contradiction Forcing Chain: R7C6.5 on ==> R6C7.3 both on & off
10.9, Region Forcing Chains: 5 in row ==> R6C2.5 off
12.4, Contradiction Forcing Chain: R4C9.6 on ==> R7C2.4 both on & off
12.4, Contradiction Forcing Chain: R7C1.4 on ==> R3C4.8 both on & off
12.4, Contradiction Forcing Chain: R8C4.4 on ==> R8C8.6 both on & off
12.4, Contradiction Forcing Chain: R9C4.5 on ==> R2C4.1 both on & off
12.5, Contradiction Forcing Chain: R3C4.1 on ==> R3C8.3 both on & off
12.5, Contradiction Forcing Chain: R8C6.4 on ==> R6C3.6 both on & off
12.5, Contradiction Forcing Chain: R3C2.4 on ==> R5C5.7 both on & off
12.5, Contradiction Forcing Chain: R9C7.6 on ==> R8C4.5 both on & off
12.5, Contradiction Forcing Chain: R4C4.1 on ==> R3C2.6 both on & off
12.3, Contradiction Forcing Chain: R3C7.1 on ==> R4C6.6 both on & off
12.6, Contradiction Forcing Chain: R2C7.8 on ==> R2C2.9 both on & off
12.6, Contradiction Forcing Chain: R6C4.3 on ==> R9C9.9 both on & off
12.4, Contradiction Forcing Chain: R9C1.5 on ==> R9C9.9 both on & off
12.4, Contradiction Forcing Chain: R9C4.4 on ==> R8C6.1 both on & off
9.1, Region Forcing Chains: 4 in diagonal(/) ==> R7C2.4 off
12.4, Contradiction Forcing Chain: R6C3.4 on ==> R7C1.8 both on & off
12.4, Contradiction Forcing Chain: R3C5.4 on ==> R2C7.7 both on & off
8.2, Nishio Forcing Chain: R4C6.4 on ==> R9C9.4 both on & off
2.8, Claiming: Cells R3C4,R4C4,R6C4: 4 in jigsaw and column
12.2, Contradiction Forcing Chain: R9C2.4 on ==> R2C8.8 both on & off
12.3, Contradiction Forcing Chain: R1C3.2 on ==> R1C9.6 both on & off
12.3, Contradiction Forcing Chain: R3C4.8 on ==> R3C1.1 both on & off
12.4, Contradiction Forcing Chain: R3C2.3 on ==> R1C5.9 both on & off
7.9, Nishio Forcing Chain: R1C9.3 on ==> R2C2.3 both on & off
12.2, Contradiction Forcing Chain: R7C8.3 on ==> R7C5.5 both on & off
12.2, Contradiction Forcing Chain: R2C2.3 on ==> R4C1.4 both on & off
12.4, Contradiction Forcing Chain: R1C6.5 on ==> R9C1.9 both on & off
12.4, Contradiction Forcing Chain: R3C2.5 on ==> R9C9.3 both on & off
12.2, Contradiction Forcing Chain: R2C6.5 on ==> R9C3.9 both on & off
12.3, Contradiction Forcing Chain: R5C2.1 on ==> R6C6.7 both on & off
9.5, Region Forcing Chains: 1 in jigsaw ==> R7C6.1 off
12.2, Contradiction Forcing Chain: R1C2.2 on ==> R3C6.3 both on & off
12.2, Contradiction Forcing Chain: R6C6.7 on ==> R3C3.8 both on & off
12.3, Contradiction Forcing Chain: R3C1.8 on ==> R9C4.1 both on & off
12.3, Contradiction Forcing Chain: R3C3.6 on ==> R1C9.9 both on & off
12.2, Contradiction Forcing Chain: R8C8.5 on ==> R3C7.4 both on & off
12.3, Contradiction Forcing Chain: R2C1.4 on ==> R3C3.9 both on & off
12.3, Contradiction Forcing Chain: R7C3.7 on ==> R3C8.3 both on & off
12.4, Contradiction Forcing Chain: R1C1.7 on ==> R7C5.5 both on & off
12.4, Contradiction Forcing Chain: R7C4.5 on ==> R7C5.1 both on & off
12.2, Contradiction Forcing Chain: R8C2.5 on ==> R2C8.7 both on & off
12.3, Contradiction Forcing Chain: R2C1.5 on ==> R6C5.7 both on & off
12.3, Contradiction Forcing Chain: R1C8.5 on ==> R7C6.9 both on & off
12.3, Contradiction Forcing Chain: R8C6.7 on ==> R4C4.8 both on & off
12.3, Contradiction Forcing Chain: R4C6.2 on ==> R6C3.7 both on & off
12.2, Contradiction Forcing Chain: R2C4.1 on ==> R1C1.4 both on & off
12.3, Contradiction Forcing Chain: R9C8.5 on ==> R6C7.8 both on & off
12.3, Contradiction Forcing Chain: R8C6.3 on ==> R5C5.7 both on & off
12.3, Contradiction Forcing Chain: R2C7.2 on ==> R3C9.6 both on & off
12.3, Contradiction Forcing Chain: R3C8.2 on ==> R7C3.3 both on & off
12.3, Contradiction Forcing Chain: R3C7.9 on ==> R4C4.3 both on & off
12.2, Contradiction Forcing Chain: R3C3.5 on ==> R8C2.4 both on & off
9.6, Contradiction Forcing Chain: R9C6.5 on ==> R2C8.5 both on & off
9.5, Contradiction Forcing Chain: R8C1.5 on ==> R6C6.5 both on & off
9.6, Contradiction Forcing Chain: R1C2.5 on ==> R4C7.5 both on & off
9.6, Region Forcing Chains: 5 in antidiagonal(\) ==> R4C8.5 off
12.1, Contradiction Forcing Chain: R9C7.7 on ==> R3C2.8 both on & off
12.2, Contradiction Forcing Chain: R1C7.3 on ==> R3C3.9 both on & off
12.2, Contradiction Forcing Chain: R7C2.6 on ==> R7C6.2 both on & off
12.2, Contradiction Forcing Chain: R6C9.3 on ==> R1C2.1 both on & off
12.2, Cell Forcing Chains: R4C9 ==> R1C6.1 off
12.2, Contradiction Forcing Chain: R3C6.5 on ==> R6C4.4 both on & off
12.0, Contradiction Forcing Chain: R2C7.7 on ==> R2C4.3 both on & off
8.2, Nishio Forcing Chain: R9C6.7 on ==> R1C3.7 both on & off
12.2, Contradiction Forcing Chain: R9C2.8 on ==> R7C5.1 both on & off
12.2, Contradiction Forcing Chain: R3C2.1 on ==> R3C4.9 both on & off
11.5, Contradiction Forcing Chain: R9C3.1 on ==> R3C2.8 both on & off
12.2, Contradiction Forcing Chain: R8C3.6 on ==> R7C1.7 both on & off
12.2, Contradiction Forcing Chain: R2C6.1 on ==> R3C3.8 both on & off
12.2, Contradiction Forcing Chain: R4C9.3 on ==> R1C1.2 both on & off
8.1, Nishio Forcing Chain: R6C6.3 on ==> R1C3.3 both on & off
11.9, Region Forcing Chains: 2 in antidiagonal(\) ==> R9C7.3 off
11.8, Contradiction Forcing Chain: R2C8.3 on ==> R2C1.2 both on & off
12.0, Contradiction Forcing Chain: R8C4.3 on ==> R7C5.7 both on & off
12.1, Contradiction Forcing Chain: R1C4.3 on ==> R5C6.1 both on & off
11.3, Contradiction Forcing Chain: R8C3.3 on ==> R2C1.1 both on & off
11.5, Contradiction Forcing Chain: R7C7.3 on ==> R6C2.4 both on & off
11.6, Contradiction Forcing Chain: R1C8.3 on ==> R8C2.1 both on & off
2.8, Claiming: Cells R1C2,R1C3,R1C5: 3 in row and jigsaw
11.5, Contradiction Forcing Chain: R1C6.4 on ==> R1C3.1 both on & off
2.8, Claiming: Cells R1C1,R1C2,R1C3,R1C5: 4 in row and jigsaw
11.4, Contradiction Forcing Chain: R3C1.1 on ==> R6C2.9 both on & off
11.5, Contradiction Forcing Chain: R6C7.4 on ==> R1C6.8 both on & off
11.5, Contradiction Forcing Chain: R6C3.3 on ==> R1C4.6 both on & off
11.5, Contradiction Forcing Chain: R9C4.7 on ==> R1C7.5 both on & off
11.6, Contradiction Forcing Chain: R6C5.7 on ==> R3C3.8 both on & off
11.9, Contradiction Forcing Chain: R9C9.1 on ==> R7C4.1 both on & off
11.9, Contradiction Forcing Chain: R8C9.3 on ==> R4C1.2 both on & off
10.6, Contradiction Forcing Chain: R9C2.3 on ==> R1C1.2 both on & off
11.9, Region Forcing Chains: 8 in row ==> R6C1.8 off
11.5, Contradiction Forcing Chain: R1C3.5 on ==> R3C9.6 both on & off
11.7, Region Forcing Chains: 5 in jigsaw ==> R8C3.1 off
8.2, Nishio Forcing Chain: R1C4.1 on ==> R9C7.1 both on & off
11.4, Contradiction Forcing Chain: R1C7.6 on ==> R3C1.5 both on & off
2.8, Claiming: Cells R5C7,R6C7,R7C7,R8C7: 6 in column and jigsaw
11.4, Contradiction Forcing Chain: R6C2.2 on ==> R9C2.1 both on & off
11.5, Contradiction Forcing Chain: R6C9.4 on ==> R9C1.9 both on & off
11.8, Contradiction Forcing Chain: R2C3.5 on ==> R9C7.1 both on & off
9.3, Contradiction Forcing Chain: R4C7.5 on ==> R6C6.5 both on & off
11.3, Contradiction Forcing Chain: R7C6.7 on ==> R3C6.3 both on & off
11.4, Contradiction Forcing Chain: R3C7.4 on ==> R3C6.8 both on & off
9.5, Contradiction Forcing Chain: R8C2.2 on ==> R2C2.1 both on & off
8.0, Nishio Forcing Chain: R3C3.2 on ==> R8C4.2 both on & off
11.2, Contradiction Forcing Chain: R6C6.9 on ==> R1C4.6 both on & off
11.3, Contradiction Forcing Chain: R4C6.5 on ==> R2C9.3 both on & off
7.6, Nishio Forcing Chain: R7C8.5 on ==> R6C6.5 both on & off
2.8, Claiming: Cells R2C8,R3C8: 5 in column and jigsaw
2.8, Claiming: Cells R1C1,R1C4,R1C5: 5 in row and jigsaw
2.8, Claiming: Cells R7C2,R9C2: 5 in column and jigsaw
7.9, Nishio Forcing Chain: R8C4.5 on ==> R3C1.5 both on & off
10.1, Contradiction Forcing Chain: R7C3.6 on ==> R9C8.6 both on & off
10.4, Contradiction Forcing Chain: R6C2.6 on ==> R7C6.9 both on & off
10.1, Contradiction Forcing Chain: R7C5.3 on ==> R5C2.2 both on & off
10.6, Contradiction Forcing Chain: R2C8.7 on ==> R3C6.7 both on & off
10.0, Contradiction Forcing Chain: R1C4.7 on ==> R6C4.8 both on & off
10.1, Contradiction Forcing Chain: R9C9.7 on ==> R4C1.8 both on & off
10.5, Contradiction Forcing Chain: R1C5.7 on ==> R3C6.3 both on & off
10.1, Contradiction Forcing Chain: R3C8.7 on ==> R1C1.2 both on & off
10.6, Contradiction Forcing Chain: R2C9.7 on ==> R9C9.9 both on & off
10.6, Contradiction Forcing Chain: R2C8.2 on ==> R7C7.6 both on & off
1.5, Hidden Single: R3C7: 2 in diagonal (/)
7.7, Nishio Forcing Chain: R1C4.2 on ==> R2C3.2 both on & off
10.1, Contradiction Forcing Chain: R1C3.1 on ==> R9C3.7 both on & off
2.8, Claiming: Cells R2C3,R3C3,R4C3,R5C3: 1 in column and jigsaw
10.0, Contradiction Forcing Chain: R2C7.1 on ==> R7C3.3 both on & off
10.6, Contradiction Forcing Chain: R3C8.8 on ==> R1C6.7 both on & off
10.7, Contradiction Forcing Chain: R2C6.9 on ==> R9C7.5 both on & off
10.7, Contradiction Forcing Chain: R5C2.6 on ==> R5C5.7 both on & off
10.0, Contradiction Forcing Chain: R7C7.6 on ==> R2C4.9 both on & off
10.6, Contradiction Forcing Chain: R9C9.3 on ==> R4C1.8 both on & off
2.9, Generalized Intersection: Cells R4C4,R8C8: 3 in antidiagonal(\)
2.8, Claiming: Cells R4C4,R4C6: 3 in row and jigsaw
9.7, Region Forcing Chains: 7 in column ==> R5C7.7 off
2.8, Claiming: Cells R5C4,R5C5,R5C6: 7 in row and jigsaw
9.9, Contradiction Forcing Chain: R4C4.4 on ==> R1C4.5 both on & off
7.8, Nishio Forcing Chain: R3C1.4 on ==> R8C2.4 both on & off
9.1, Region Forcing Chains: 4 in antidiagonal(\) ==> R1C3.4 off
9.9, Contradiction Forcing Chain: R1C1.5 on ==> R7C4.3 both on & off
2.8, Claiming: Cells R3C1,R4C1,R6C1: 5 in column and jigsaw
2.8, Claiming: Cells R7C3,R8C3: 5 in column and jigsaw
2.8, Claiming: Cells R4C4,R6C6: 5 in antidiagonal(\) and jigsaw
9.0, Region Forcing Chains: 2 in row ==> R6C9.8 off
9.0, Region Forcing Chains: 2 in row ==> R6C9.9 off
9.4, Contradiction Forcing Chain: R7C2.2 on ==> R8C2.6 both on & off
7.9, Nishio Forcing Chain: R5C3.2 on ==> R4C9.2 both on & off
7.8, Nishio Forcing Chain: R4C9.2 on ==> R1C1.2 both on & off
9.4, Contradiction Forcing Chain: R7C2.9 on ==> R6C4.9 both on & off
9.4, Contradiction Forcing Chain: R7C2.8 on ==> R9C9.6 both on & off
9.5, Contradiction Forcing Chain: R7C2.1 on ==> R7C7.7 both on & off
9.2, Contradiction Forcing Chain: R7C4.3 on ==> R1C1.6 both on & off
7.6, Nishio Forcing Chain: R9C3.3 on ==> R8C8.3 both on & off
2.8, Claiming: Cells R6C2,R7C2,R8C2: 3 in jigsaw and column
9.0, Region Forcing Chains: 3 in row ==> R4C4.8 off
9.0, Region Forcing Chains: 3 in row ==> R4C4.9 off
9.4, Contradiction Forcing Chain: R1C5.9 on ==> R6C2.4 both on & off
8.9, Cell Forcing Chains: R1C5 ==> R7C3.9 off
9.4, Contradiction Forcing Chain: R2C8.8 on ==> R2C2.2 both on & off
9.2, Contradiction Forcing Chain: R4C7.8 on ==> R5C2.2 both on & off
2.8, Claiming: Cells R1C6,R2C6,R3C6: 8 in jigsaw and column
9.4, Contradiction Forcing Chain: R2C6.7 on ==> R9C9.8 both on & off
2.8, Claiming: Cells R2C1,R2C4: 7 in row and jigsaw
9.4, Contradiction Forcing Chain: R1C3.8 on ==> R9C6.3 both on & off
9.4, Contradiction Forcing Chain: R1C1.8 on ==> R4C1.6 both on & off
9.4, Contradiction Forcing Chain: R8C3.7 on ==> R5C7.8 both on & off
8.8, Region Forcing Chains: 2 in antidiagonal(\) ==> R2C1.2 off
9.4, Contradiction Forcing Chain: R1C4.6 on ==> R7C7.8 both on & off
2.8, Claiming: Cells R7C4,R8C4,R9C4: 6 in column and jigsaw
8.7, Region Forcing Chains: 9 in column ==> R6C6.2 off
1.5, Hidden Single: R6C9: 2 in row 6
2.8, Claiming: Cells R1C1,R2C2: 2 in antidiagonal(\) and jigsaw
2.8, Claiming: Cells R7C4,R8C4: 2 in column and jigsaw
2.8, Claiming: Cells R2C3,R4C3: 2 in column and jigsaw
8.6, Region Forcing Chains: 9 in antidiagonal(\) ==> R9C7.9 off
9.0, Cell Forcing Chains: R7C3 ==> R8C7.9 off
9.0, Cell Forcing Chains: R1C5 ==> R6C2.8 off
9.0, Region Forcing Chains: 4 in antidiagonal(\) ==> R9C7.4 off
9.1, Region Forcing Chains: 8 in row ==> R7C7.8 off
7.9, Nishio Forcing Chain: R2C9.8 on ==> R1C6.8 both on & off
9.1, Cell Forcing Chains: R7C7 ==> R1C1.9 off
9.1, Cell Forcing Chains: R7C7 ==> R7C6.9 off
9.0, Region Forcing Chains: 6 in antidiagonal(\) ==> R7C8.6 off
9.0, Cell Forcing Chains: R7C8 ==> R9C7.8 off
8.1, Nishio Forcing Chain: R7C9.8 on ==> R2C6.8 both on & off
7.8, Nishio Forcing Chain: R5C2.8 on ==> R9C9.8 both on & off
2.8, Claiming: Cells R1C2,R2C2,R3C2: 8 in column and jigsaw
7.9, Nishio Forcing Chain: R3C3.8 on ==> R4C8.8 both on & off
7.1, Forcing Chain: R7C1.2 off
8.3, Region Forcing Chains: 1 in row ==> R8C4.1 off
8.5, Region Forcing Chains: 8 in column ==> R4C8.6 off
7.9, Nishio Forcing Chain: R3C1.6 on ==> R6C7.6 both on & off
8.4, Region Forcing Chains: 6 in row ==> R1C1.6 off
8.5, Region Forcing Chains: 8 in column ==> R4C8.9 off
8.5, Region Forcing Chains: 9 in column ==> R2C3.9 off
8.8, Region Forcing Chains: 2 in column ==> R8C4.6 off
8.0, Nishio Forcing Chain: R7C6.6 on ==> R8C2.6 both on & off
2.3, Naked Single: R7C6: 2
1.5, Hidden Single: R8C4: 2 in column 4
1.5, Hidden Single: R1C1: 2 in column 1
1.5, Hidden Single: R5C2: 2 in column 2
1.5, Hidden Single: R4C8: 2 in column 8
1.5, Hidden Single: R2C3: 2 in column 3
2.8, Claiming: Cells R2C6,R2C7: 4 in row and jigsaw
7.6, Nishio Forcing Chain: R8C2.4 on ==> R6C5.4 both on & off
7.7, Nishio Forcing Chain: R1C2.8 on ==> R9C9.8 both on & off
7.8, Nishio Forcing Chain: R7C9.4 on ==> R3C4.4 both on & off
7.8, Nishio Forcing Chain: R3C9.1 on ==> R2C1.1 both on & off
7.7, Nishio Forcing Chain: R8C2.1 on ==> R2C9.1 both on & off
7.8, Nishio Forcing Chain: R7C8.7 on ==> R9C1.7 both on & off
8.3, Region Forcing Chains: 8 in jigsaw ==> R7C4.7 off
8.5, Region Forcing Chains: 1 in column ==> R9C7.5 on
1.5, Hidden Single: R7C2: 5 in column 2
1.5, Hidden Single: R8C3: 5 in column 3
1.5, Hidden Single: R6C6: 5 in column 6
1.5, Hidden Single: R1C4: 5 in column 4
1.5, Hidden Single: R2C8: 5 in row 2
2.3, Naked Single: R4C4: 3
2.8, Claiming: Cells R8C8,R9C9: 6 in antidiagonal(\) and jigsaw
6.5, Generalized X-Wing: R7C3,R6C5,R1C5,R1C3
6.5, Generalized X-Wing: R6C5,R7C3,R8C2,R6C2
7.1, Forcing Chain: R6C2.9 off
7.8, Nishio Forcing Chain: R8C7.6 on ==> R7C1.6 both on & off
7.9, Nishio Forcing Chain: R4C5.1 on ==> R2C1.1 both on & off
8.3, Region Forcing Chains: 4 in column ==> R8C7.7 off
7.6, Nishio Forcing Chain: R7C1.7 on ==> R6C7.7 both on & off
8.4, Cell Forcing Chains: R3C8 ==> R9C9.8 off
1.5, Hidden Single: R2C2: 8 in antidiagonal (\)
2.8, Claiming: Cells R7C8,R9C8: 8 in jigsaw and column
2.9, Generalized Intersection: Cells R3C3,R5C5: 1 in antidiagonal(\)
2.8, Claiming: Cells R5C4,R5C5,R5C6: 1 in row and jigsaw
6.8, Forcing X-Chain: R7C1.1 off
2.8, Claiming: Cells R7C4,R7C5: 1 in row and jigsaw
3.2, X-Wing: Cells R5C4,R5C5,R7C4,R7C5: 1 in 2 columns and 2 rows
7.1, Forcing Chain: R6C3.9 off
2.3, Naked Single: R6C3: 7
1.9, Direct Claiming: Cells R8C1,R9C1: 7 of jigsaw in column
6.6, Turbot Fish: R1C6.7 off
2.8, Claiming: Cells R1C7,R1C8,R1C9: 7 in row and jigsaw
7.1, Forcing Chain: R6C4.9 off
7.1, Forcing Chain: R6C5.9 off
2.0, Direct Hidden Pair: Cells R6C1,R6C7: 6,9 in row
1.5, Hidden Single: R3C4: 4 in column 4
2.8, Claiming: Cells R4C1,R4C3: 4 in jigsaw and row
1.9, Direct Claiming: Cells R8C9,R9C9: 4 of column in jigsaw
3.0, Naked Pair: Cells R1C5,R6C5: 3,4 in column
3.2, X-Wing: Cells R3C6,R3C8,R9C6,R9C8: 3 in 2 columns and 2 rows
3.6, Naked Triplet: Cells R4C9,R5C7,R6C7: 6,8,9 in jigsaw
2.9, Generalized Intersection: Cells R4C9,R5C7,R6C7: 9 in jigsaw
2.3, Naked Single: R4C7: 1
1.5, Hidden Single: R3C3: 1 in column 3
1.5, Hidden Single: R7C5: 1 in column 5
1.5, Hidden Single: R5C4: 1 in column 4
2.8, Claiming: Cells R8C6,R9C6: 1 in column and jigsaw
6.5, Generalized X-Wing: R1C9,R9C1,R9C2,R1C2
1.5, Hidden Single: R8C6: 1 in column 6
6.5, Generalized X-Wing: R7C3,R9C1,R4C1,R4C3
7.1, Forcing Chain: R1C9.9 off
7.1, Forcing Chain: R4C5.9 off
2.0, Direct Hidden Pair: Cells R3C5,R5C5: 7,9 in column
1.5, Hidden Single: R3C1: 5 in column 1
7.1, Forcing Chain: R4C6.9 off
2.0, Direct Hidden Pair: Cells R5C5,R5C6: 7,9 in jigsaw
2.8, Claiming: Cells R5C5,R5C6: 9 in jigsaw and row
6.6, Bidirectional Y-Cycle: R7C7,R7C3,R8C2,R5C5
2.3, Naked Single: R8C8: 6
1.5, Hidden Single: R3C9: 6 in column 9
1.5, Hidden Single: R4C9: 8 in column 9
1.5, Hidden Single: R7C1: 8 in column 1
1.5, Hidden Single: R6C1: 6 in column 1
1.5, Hidden Single: R5C3: 8 in column 3
1.5, Hidden Single: R5C7: 6 in column 7
1.5, Hidden Single: R1C7: 8 in column 7
1.5, Hidden Single: R3C6: 8 in column 6
1.5, Hidden Single: R9C6: 3 in column 6
1.5, Hidden Single: R5C6: 7 in column 6
1.0, Hidden Single: R1C6: 9 in column 6
1.0, Hidden Single: R5C5: 9 in row 5
1.5, Hidden Single: R3C5: 7 in column 5
1.5, Hidden Single: R7C7: 7 in column 7
1.5, Hidden Single: R8C7: 4 in column 7
1.5, Hidden Single: R2C7: 3 in column 7
1.0, Hidden Single: R6C7: 9 in column 7
1.5, Hidden Single: R3C8: 3 in column 8
1.0, Hidden Single: R3C2: 9 in row 3
1.5, Hidden Single: R9C8: 8 in column 8
1.5, Hidden Single: R1C8: 7 in column 8
1.0, Hidden Single: R7C8: 9 in column 8
1.5, Hidden Single: R9C4: 9 in column 4
1.0, Hidden Single: R7C4: 6 in column 4
1.5, Hidden Single: R4C3: 9 in column 3
1.0, Hidden Single: R4C1: 4 in row 4
1.5, Hidden Single: R8C1: 9 in column 1
1.5, Hidden Single: R9C1: 7 in column 1
1.0, Hidden Single: R2C1: 1 in column 1
1.0, Hidden Single: R2C9: 9 in row 2
1.5, Hidden Single: R9C2: 1 in column 2
1.5, Hidden Single: R1C2: 6 in column 2
1.5, Hidden Single: R6C2: 4 in column 2
1.0, Hidden Single: R8C2: 3 in column 2
1.0, Hidden Single: R6C5: 3 in row 6
1.0, Hidden Single: R1C5: 4 in column 5
1.0, Hidden Single: R8C9: 7 in row 8
1.5, Hidden Single: R1C3: 3 in column 3
1.0, Hidden Single: R1C9: 1 in row 1
1.5, Hidden Single: R7C3: 4 in column 3
1.0, Hidden Single: R9C3: 6 in column 3
1.0, Hidden Single: R7C9: 3 in row 7
1.0, Hidden Single: R9C9: 4 in column 9
urhegyi
 
Posts: 616
Joined: 13 April 2020

Re: variants with SE 12.x

Postby Hajime » Thu Apr 21, 2022 12:31 pm

SER=12.6 very very hard. Also not solvable with T&E(2), nested forcing nets.
SiSeSuSo needs 30 minutes ! to test if it has a unique solution using BFBT (fails to search for a second solution).
What are you using to create such monsters ?
User avatar
Hajime
 
Posts: 1022
Joined: 20 April 2018
Location: Netherlands

Re: variants with SE 12.x

Postby urhegyi » Sun Apr 24, 2022 7:33 pm

just to compare my last one took 2 hours to rate and log:
Code: Select all
.............6..............7.......3......45.......1..............8........2.... 111113222117133322717633322777636325787666525784646555884446595884449599888499999 JSX ED=12.6/12.6/2.8

and this even harder one almost 24 hours:
Code: Select all
...................74......5......8....3.............2..9.............1.......... 111113222117133322717633322777636325787666525784646555884446595884449599888499999 JSX ED=12.6/12.6/7.9

or renumbered:
Code: Select all
...................12......3......4....5.............6..7.............8.......... 111113222117133322717633322777636325787666525784646555884446595884449599888499999 JSX ED=12.6/12.6/7.9
urhegyi
 
Posts: 616
Joined: 13 April 2020

Re: variants with SE 12.x

Postby urhegyi » Fri May 06, 2022 6:28 am

An attempt to find more:
a) 8 clue JSX
b) layout : 111113222117133322717633322777636325787666525784646555884446595884449599888499999
c) first elimination rated as high as possible
examples:
Code: Select all
...................74......5......8....3.............2..9.............1.......... 111113222117133322717633322777636325787666525784646555884446595884449599888499999 JSX ED=12.6/12.6/7.9
....................3..58......7...2...................4......69................. 111113222117133322717633322777636325787666525784646555884446595884449599888499999 JSX ED=12.5/12.5/7.8
............8....................9...6.....7..14................5..............2. 111113222117133322717633322777636325787666525784646555884446595884449599888499999 JSX ED=12.4/12.4/7.9
..............6..........1.........8...2.........4...3.......7......5............ 111113222117133322717633322777636325787666525784646555884446595884449599888499999 JSX ED=12.0/12.0/7.8
..........35...7.......12...........8.............6......4....................... 111113222117133322717633322777636325787666525784646555884446595884449599888499999 JSX ED=11.4/11.4/7.9
urhegyi
 
Posts: 616
Joined: 13 April 2020

Re: variants with SE 12.x

Postby urhegyi » Mon May 30, 2022 7:10 pm

All 8 clue examples found above start with a 7.8(or 7.9) nishio chain.
Any idea how to find higher rated ones for the starting step.
urhegyi
 
Posts: 616
Joined: 13 April 2020


Return to Sudoku variants