The first of these two exemplars represents the rcb/rcb mutant swordfish, or otherwise a grouped continuous loop. In contrast however, in the second exemplar, there is no longer a continuous loop and the row and column eliminations are no longer justified. However, the potential eliminations in box 9 persist. If X is true in row 2 in box 1, then the X at r2c8 is false, and the X at r8c8 is true. If instead the X is true in column 2 in box 1, then the X at r8c2 is false and the X at r8c8 is true. So, wherever X is true in box 1, X is true at r8c8.
Fig 1
- Code: Select all
/ X / | . . . | . / .
X *X X | * * * | * X *
/ X / | . . . | . / .
---------+----------+----------
. * . | . . . | . / .
. * . | . . . | . / .
. * . | . . . | . / .
---------+----------+----------
. * . | . . . | * X *
/ X / | / / / | X / X
. * . | . . . | * X *
Fig2
- Code: Select all
/ X / | . . . | . / .
X X X | . . . | . *X .
/ X / | . . . | . / .
---------+----------+----------
. . . | . . . | . / .
. . . | . . . | . / .
. . . | . . . | . / .
---------+----------+----------
. . . | . . . | * / *
/ *X / | / / / | / X /
. . . | . . . | * / *
X = base candidate, which may be missing
/ = empty cell, a cell that may not have an "X" candidate
* = potential eliminations
When the intersecting lines in box 9 contain more than one candidate, things get more complicated. Whenever there is an X in the intersection, ie r8c8 in above example, the continuous loop fails, and the eliminations in the cells in box 9 excepting those in row 8 and colun 8 persist. Whenever there is no X candidate in the intersection cell, there has to be X candidates in row 8 and column 8 forming a "hinge". In this situation a continuous loop (mutant swordfish) exists. Thus the deciding factor is the presence of a candidate in the intersecting cell.
Examples with a candidate in intersecting cell
- Code: Select all
.4...9..7...2...91..8.7..36..2..76..7.......9.6.1...8.68..3.1..25.7....33....4...
.12...3..4.5.6....76.8.......89..1...5..7..9......4..23..2..4......9..7......1..3
.12.3....4.5...2..36.2.......76..1..8....7.5.....8...9.2.9..3......1..6......5..7
3.8.61..9..6...3...4.5...765...8.6..6..3.5..4..3.1...219...7.6...5...7..8..69.1.5
47.....2.93.42...78125.734.364.72.8.129845673587...4.2741.532.82587...3.6932..75.
1...2.3...3...4..5..63...4...2.4.1..6..5....7.1...7...8..9....2..5....9..2..7.8.6
.237....68...6.59.9.....7......4.97.3.7.96..2.........5..47.........2....8.......
1..9...2..4..6...8..5..1....2..3...95..7.......6..48...5..9..1......2..7..3...6..
...564....4.....1.3...9...67..94...1..4.5.2..9...12..58...7...9.6.....7....628...
....514....1.2..9..7...6.5.24....3.51.......75.7....84.1.5...4..9..6.8....231....
....6..878...2..5.75.8......8.5....9..4...7..1....4.6......8.13.6..3...423..5....
..5.4..6.7.....2...94.....8...8374..8...9...6..2164...5.....93...1.....2.3..8.6..
..52386...........1.......8.8..4..2.6.......7.23...18....9.4...9.4...8.53.28.59.1
Examples without a candidate in intersecting cell
- Code: Select all
.....1..2....3..14...54.63...57.6....27.8...68..9.......9....6..82...9..37..9...8
5.2...1.9.6.....3...83.57.....4.6....7.812.6.6.......841.....83.........3...5...1
1.......2.3.4..5....6....1..4.37.......8.5..9....24....8....3....2....7.9...6...1
8.....6.1.651...8.2....4.5...92.1.7.....5.....8.9.32...5.3....2.1...579.6.2.....3
..5...3...8.....9.9...6.......4.3.7.5.1...8.2.4.8.5.......9...5.1.....6...3...7..
38.26...4..2.9.....6....3...5...3..8.9.....7.2..7...3...7....2.....2.9..8...17.43
..2...1..415...6387.......46...5...9.8..3..7...79.18......2....3.8.7.4.5...4.3...
.8.7...2.6......4...26.17.9..4..6.383..5.8..282.1..4..9.84.72...1......4.4...2.6.
.531...6......7..84...6.....2.5..8..6.9...7.3..7..3.2.....8...52..7......9...614.
...2.4...3..869..1.........564...123..2...8..7...4...58..1.5..9.5.....8.....2....
7.........829....3.96...8..9..58.1.6..7.6.4..6.5.24..8..9...35.2....564.........2
95.7...3...78.4..2......7..82......6...1.2...6......57..4......7..6.34...3...7.29
Dale and I thought "Twin ERs" might be a suitable name for it. I haven't noticed anyone using this strategy in the puzzle section of the Player's forum.
Even so, I am interested to know if the strategy has previously been described, perhaps under a different name.
Phil