.
I have coded eleven's impossible pattern #37 in his 15-cell list (see previous post).
As an automatic result, I can use it with ORk-chains (Elev-ORk-chains)
There's a solution combining the basic tridagon elimination rule and the new Elev-ORk-chains. But the tridagon is almost useless in the solution. Here's an easy one using only Elev-ORk-chains (in addition to standard chains).
SudoRules identifies two different instances of the pattern (only one will be used). It may be that my (largely untested) code for detecting the pattern is not selective enough.
- Code: Select all
+----------------------+----------------------+----------------------+
! 168 12368 7 ! 123 9 1238 ! 4 5 123 !
! 18 9 1238 ! 1235 1234 123458 ! 6 123 7 !
! 4 123 5 ! 6 7 123 ! 123 8 9 !
+----------------------+----------------------+----------------------+
! 189 1238 12389 ! 4 5 123 ! 7 6 123 !
! 7 123 4 ! 9 123 6 ! 8 123 5 !
! 156 12356 1236 ! 123 8 7 ! 123 9 4 !
+----------------------+----------------------+----------------------+
! 1569 1456 169 ! 8 12346 123459 ! 12359 7 1236 !
! 3 14568 1689 ! 7 1246 12459 ! 1259 124 126 !
! 2 7 169 ! 135 1346 13459 ! 1359 134 8 !
+----------------------+----------------------+----------------------+
OR3-anti-eleven[15] for digits 2, 3 and 1
anti-block: 7
anti-column: 1
blocks:
b6, with cells: r4c9, r5c8, r6c7
b2, with cells: r1c4, r2c5, r3c6
b3, with cells: r1c9, r2c8, r3c7
b4, with cells: r5c2, r6c3
b5, with cells: r4c6, r6c4
b1, with cells: r2c3, r3c2
with 3 guardians: n8r2c3 n4r2c5 n6r6c3
OR2-anti-eleven[15] for digits 2, 3 and 1
anti-block: 7
anti-column: 1
blocks:
b3, with cells: r1c9, r2c8, r3c7
b5, with cells: r4c6, r5c5, r6c4
b6, with cells: r4c9, r5c8, r6c7
b1, with cells: r2c3, r3c2
b2, with cells: r1c4, r3c6
b4, with cells: r5c2, r6c3
with 2 guardians: n8r2c3 n6r6c3
The ORk-chains part:
Elev-OR2-whip[3]: OR2{{n8r2c3 | n6r6c3}} - c3n2{r6 r4} - c3n3{r4 .} ==> r2c3≠1
Elev-OR2-whip[3]: OR2{{n8r2c3 | n6r6c3}} - c3n2{r6 r2} - c3n3{r2 .} ==> r4c3≠8biv-chain[3]: r4n9{c3 c1} - r4n8{c1 c2} - b7n8{r8c2 r8c3} ==> r8c3≠9
Elev-OR2-whip[3]: OR2{{n6r6c3 | n8r2c3}} - r1c1{n8 n1} - r2c1{n1 .} ==> r6c1≠6
Elev-OR2-whip[3]: OR2{{n6r6c3 | n8r2c3}} - c3n2{r2 r4} - c3n3{r4 .} ==> r6c3≠1- Code: Select all
z-chain[4]: c3n1{r9 r4} - r6c1{n1 n5} - c2n5{r6 r7} - c2n4{r7 .} ==> r8c2≠1
z-chain[4]: c3n1{r9 r4} - r6c1{n1 n5} - c2n5{r6 r8} - c2n4{r8 .} ==> r7c2≠1
z-chain[4]: r4n8{c2 c1} - c1n9{r4 r7} - b7n5{r7c1 r7c2} - c2n4{r7 .} ==> r8c2≠8
hidden-single-in-a-block ==> r8c3=8
+----------------------+----------------------+----------------------+
! 168 12368 7 ! 123 9 1238 ! 4 5 123 !
! 18 9 23 ! 1235 1234 123458 ! 6 123 7 !
! 4 123 5 ! 6 7 123 ! 123 8 9 !
+----------------------+----------------------+----------------------+
! 189 1238 1239 ! 4 5 123 ! 7 6 123 !
! 7 123 4 ! 9 123 6 ! 8 123 5 !
! 15 12356 236 ! 123 8 7 ! 123 9 4 !
+----------------------+----------------------+----------------------+
! 1569 456 169 ! 8 12346 123459 ! 12359 7 1236 !
! 3 456 8 ! 7 1246 12459 ! 1259 124 126 !
! 2 7 169 ! 135 1346 13459 ! 1359 134 8 !
+----------------------+----------------------+----------------------+
At least one candidate of a previous Elev-OR2-relation has just been eliminated.
There remains a Elev-OR1-relation between candidates: n6r6c3
Elev-ORk-relation with only one candidate => r6c3=6The end is easy, in W4:
- Code: Select all
hidden-single-in-a-row ==> r9c5=6
naked-pairs-in-a-block: b7{r7c3 r9c3}{n1 n9} ==> r7c1≠9, r7c1≠1
singles ==> r4c1=9, r4c2=8
whip[1]: b7n1{r9c3 .} ==> r4c3≠1
z-chain[3]: b4n1{r6c2 r5c2} - r3n1{c2 c6} - r4n1{c6 .} ==> r6c7≠1
whip[4]: c3n3{r4 r2} - r3n3{c2 c7} - c9n3{r1 r7} - c5n3{r7 .} ==> r4c6≠3
z-chain[4]: r6c7{n3 n2} - r6c4{n2 n1} - r4c6{n1 n2} - r4c3{n2 .} ==> r6c2≠3
z-chain[4]: c4n2{r2 r6} - b5n3{r6c4 r5c5} - b4n3{r5c2 r4c3} - c3n2{r4 .} ==> r2c6≠2, r2c5≠2
t-whip[4]: r2c3{n2 n3} - r4n3{c3 c9} - b6n1{r4c9 r5c8} - r2c8{n1 .} ==> r2c4≠2
z-chain[3]: b2n2{r1c6 r3c6} - r4n2{c6 c3} - r2n2{c3 .} ==> r1c9≠2
z-chain[3]: b3n2{r3c7 r2c8} - c3n2{r2 r4} - c9n2{r4 .} ==> r8c7≠2, r7c7≠2
finned-x-wing-in-columns: n2{c7 c4}{r6 r3} ==> r3c6≠2
whip[1]: b2n2{r1c6 .} ==> r1c2≠2
biv-chain[3]: r1n2{c4 c6} - r4c6{n2 n1} - r3c6{n1 n3} ==> r1c4≠3
biv-chain[3]: r3c6{n3 n1} - r4n1{c6 c9} - r1c9{n1 n3} ==> r1c6≠3, r3c7≠3
finned-x-wing-in-rows: n3{r4 r1}{c9 c3} ==> r2c3≠3
singles ==> r2c3=2, r4c3=3, r3c7=2, r6c7=3, r5c5=3
whip[1]: c5n2{r8 .} ==> r7c6≠2, r8c6≠2
whip[1]: c7n1{r9 .} ==> r7c9≠1, r8c8≠1, r8c9≠1, r9c8≠1
naked-pairs-in-a-column: c4{r1 r6}{n1 n2} ==> r9c4≠1, r2c4≠1
x-wing-in-columns: n3{c4 c8}{r2 r9} ==> r9c6≠3, r2c6≠3
finned-x-wing-in-columns: n1{c4 c1}{r6 r1} ==> r1c2≠1
finned-x-wing-in-columns: n1{c9 c4}{r1 r4} ==> r4c6≠1
stte