I also applied (manually or by software, it's just a difference in time) to the best ranked of the superior puzzles, the #74 by Vidarino.
Hard indeed. After a first pass I stuck at:
- Code: Select all
  3458 35789 3489 |    1   458    6 | 5789 2789   2789
 4568  5678    1 |  245     9 2458 |    3  278   2678 
  568     2  689 |    7    58    3 | 5689    4      1
-----------------------------------------------------
    7   368    2 |   69  1368   89 |    4  189      5
    1     4   38 |  259  3578 2589 |  789    6    789
    9    68    5 |   46 14678   48 |    2  178      3
-----------------------------------------------------
 2346     1 3469 |    8    46    7 |   69    5   2469
 4568  5689    7 | 4569     2  459 |    1    3   4689
24568  5689 4689 |    3   456    1 | 6789 2789 246789
 
Far from being solved, and with a lot of couples to test.
But I noticed that in the central block the 4 couples are connected, i.e. they admit only 2 solutions.
So I found that r4c4=6 is correct, r4c4=9 is not
With r4c4=6 the resulting scheme was:
- Code: Select all
  
 3458 35789 3489 |  1 458   6 | 5789 2789   2789
 4568   578    1 | 25   9 245 |    3  278   2678
  568     2  689 |  7  58   3 | 5689    4      1
----------------------------------------------------
    7    38    2 |  6  13   9 |    4   18      5
    1     4   38 | 25 357  25 |  789    6    789
    9     6    5 |  4  17   8 |    2   17      3
----------------------------------------------------
 2346     1 3469 |  8  46   7 |   69    5   2469 
 4568    58    7 |  9   2  45 |    1    3    468
24568   589 4689 |  3 456   1 | 6789 2789 246789   
(forget the first 2 vertical lines, introduced by the code)
Again, I had to choose, and my software confirmed that for r5c2 the right solution was a 3. Result:
- Code: Select all
  
 3458 5789  349 |  1 458   6 | 5789 279   2789
 4568  578    1 | 25   9 245 |    3  27   2678
  568    2   69 |  7  58   3 | 5689   4      1
---------------------------------------------------
    7    3    2 |  6   1   9 |    4   8      5
    1    4    8 | 25   3  25 |   79   6     79
    9    6    5 |  4   7   8 |    2   1      3
---------------------------------------------------
 2346    1 3469 |  8  46   7 |   69   5   2469 
 4568   58    7 |  9   2  45 |    1   3    468
24568  589  469 |  3 456   1 | 6789 279 246789   
Finally, I noticed that in the upper center block 2 is present only in the second row, so it can be eliminated from the same row of the two side blocks. In particular r2c8=7, what allows to proceed up to solution.
- Code: Select all
 3 7 4 | 1 8 6 | 5 9 2
6 5 1 | 2 9 4 | 3 7 8
8 2 9 | 7 5 3 | 6 4 1
----------------------           
7 3 2 | 6 1 9 | 4 8 5
1 4 8 | 5 3 2 | 7 6 9
9 6 5 | 4 7 8 | 2 1 3
----------------------
2 1 3 | 8 6 7 | 9 5 4
4 8 7 | 9 2 5 | 1 3 6
5 9 6 | 3 4 1 | 8 2 7
By the way, when I operate manually I always follow that purging strategy, and the same for triplets of numbers forming three groups in a block or along a row or a column (those numbers can be eliminated from the other positions of the block, row or column). Sorry for my bad way of exposition.
My way of preceeding is rather rough and it must be supported by a simple software to test between alternate double solutions in an acceptable time. But I showed that even hard schemes can be solved in a short time.