The Effortless Extremes thread

Everything about Sudoku that doesn't fit in one of the other sections

Postby ravel » Wed Jul 19, 2006 9:21 am

RW wrote:... (#36). There is at least 5 different URs that allow eliminations (and a BUG-lite) ...

Code: Select all
 1    2    3   | 9   5    67   | 4    8    67         
 69   468  46  | 1   378  2367 | 237  5    679       
 569  568  7   | 4   38   236  | 23   269  1         
----------------------------------------------
 57   57   8   | 3   1    9    | 6    4    2         
 36   36   9   | 2   4    8    | 1    7    5         
 4    1    2   | 7   6    5    | 9    3    8         
----------------------------------------------
 8    67   1   | 5   9    4    | 27   26   3         
 367  3467 46  | 8   2    1    | 5    69   679       
 2    9    5   | 6   37   37   | 8    1    4         

Which one am i missing?
What i saw was:
UR4 36 in r48c12: r8c12<>6
UR4 46 in r28c23: r28c2<>6
UR 37 in r29c56: r2c6<>3
UR 23 in r23c67: r23c6<>3

r8c9=6 => r8c8=9 => (r7c8<>6)r3c8=6 => r2c9=9 => r2c1=6 => r3c1=9
=> r8c9<>6

But nothing solved it.
ravel
 
Posts: 998
Joined: 21 February 2006

Postby Carcul » Wed Jul 19, 2006 10:44 am

Ravel wrote:UR4 36 in r48c12: r8c12<>6
UR4 46 in r28c23: r28c2<>6


We can use those two URs in another way, by noting that, if r7c2=7 then r2c2 must be "8". But:

[r7c7]=7=[r7c2]=8=[r2c2]=4=[r8c2]=3=[r8c1]-3-[r5c1]-6-[r2c1]-9-
-[r2c9]=9=[r8c9]=7=[r7c7], => r7c7=7 which solve the puzzle.

This deduction makes use of a concept that I use for some time and that I call "Two Incompatible Unique Rectangles" (TIUR).

Ravel wrote:UR 37 in r29c56: r2c6<>3
UR 23 in r23c67: r23c6<>3


Using that concept, we can use these two URs in an interesting deduction that, unfortunately, doesn't solve the puzzle. Note that if r1c6=6 then r3c5 cannot be "8". But:

r1c6=6 => Naked Pair in cells r3c67 => r3c5<>3 => r3c5=8.

So r1c6<>6.

Carcul
Carcul
 
Posts: 724
Joined: 04 November 2005

Postby RW » Wed Jul 19, 2006 5:49 pm

ravel wrote:
Code: Select all
 1    2    3   | 9   5    67   | 4    8    67         
 69   468  46  | 1   378  2367 | 237  5    679       
 569  568  7   | 4   38   236  | 23   269  1         
----------------------------------------------
 57   57   8   | 3   1    9    | 6    4    2         
 36   36   9   | 2   4    8    | 1    7    5         
 4    1    2   | 7   6    5    | 9    3    8         
----------------------------------------------
 8    67   1   | 5   9    4    | 27   26   3         
 367  3467 46  | 8   2    1    | 5    69   679       
 2    9    5   | 6   37   37   | 8    1    4 


Which one am i missing?


There's a UR+2k in r12c69 + r2c1 (r2c6<>6). This is how far I got when trying to solve the puzzle, but unfortunately this doesn't solve it either. To solve it you must use one of the URs you already mentioned as a +2k variant (include one extra bivalue cell).

RW
RW
2010 Supporter
 
Posts: 1010
Joined: 16 March 2006

Postby ravel » Wed Jul 19, 2006 7:57 pm

Ah, thats nice, r2c1 is the extra cell (and r7c2 for the other):)

But does it classify, when it needs 2 UR's (the nice it is) ?

PS: i saw now that eliminating 3 from r8c2 (with the extra cell r7c2) alone solves the puzzle.
ravel
 
Posts: 998
Joined: 21 February 2006

Postby RW » Thu Jul 20, 2006 6:00 am

Very good ravel! Did you also see the BUG-lite in r2c19, r3c18 and r8c89 (r8c9<>6)?

Even if this is a nice puzzle, I'm not sure if it should be on the list. If a puzzle is solvable by a collection of easier techniques than the extreme move, then it shouldn't qualify. This puzzle solves with one UR type 4 and a XY-wing, the xy-wing is in the same cells as the UR+2kx and makes the same elimination. This solution is very easy to find while the UR+2kx has proven to be quite hard...

RW
RW
2010 Supporter
 
Posts: 1010
Joined: 16 March 2006

Postby RW » Fri Jul 21, 2006 5:16 pm

Here's another sneaky UR in a fully symmetrical puzzle. I'm not adding it to the list, as there is already so many URs and this puzzle also has several alternative ways to reach the solution (BUG-lite+1 + X-wing + UR type 4, or BUG-lite+1 + XY-wing, or X-wing + XY-wing + UR type 1 + BUG-lite+2 + XY-wing). But, it is also solvable by singles + locked candidates (once is enough) + one UR. Enjoy!:)

Code: Select all
 *-----------*
 |..1|9.2|3..|
 |...|...|...|
 |6..|318|..4|
 |---+---+---|
 |8.5|...|6.7|
 |..2|...|5..|
 |4.6|...|8.1|
 |---+---+---|
 |2..|196|..3|
 |...|...|...|
 |..9|5.3|1..|
 *-----------*


RW
RW
2010 Supporter
 
Posts: 1010
Joined: 16 March 2006

Postby RW » Fri Jul 21, 2006 8:32 pm

I just added another fully symmetrical puzzle under the title 'Advanced BUG-lite':

Code: Select all
..36.49.....7.2...6.......435.....98.........82.....755.......6...9.7.....12.68..


The intended solution combines a BUG-lite+some strong links with a XY-chain. I'm sure none of your solvers will find this move, but IMO it's actually easier than finding a normal XY-chain, because when I smell the BUG-lite I know where to start the chain. Good luck!

Edit: And I added a BUG-lite+1 for those who want to practise on something easier first.

RW
RW
2010 Supporter
 
Posts: 1010
Joined: 16 March 2006

Postby ab » Sat Jul 22, 2006 11:39 pm

here's one with an xyz wing.
Code: Select all
 . . 4 | . 3 . | 6 8 2
 . . . | 9 . . | . . 7
 7 . . | . 4 . | . . 3
 ------+-------+------
 . 3 . | . . . | . . .
 5 . 7 | . . . | 1 . 8
 . . . | . . . | . 4 .
 ------+-------+------
 8 . . | . 5 . | . . 4
 9 . . | . . 7 | . . .
 4 1 3 | . 9 . | 7 . .

ab
 
Posts: 451
Joined: 06 September 2005

Postby RW » Sun Jul 23, 2006 8:21 am

Thanks ab! At first it seemed that the puzzle could be a very good candidate to reveal a Reverse BUG elimination (26), but unfortunately I couldn't find any. But the XYZ-wing solved it nicely, puzzle added to the list.

RW
RW
2010 Supporter
 
Posts: 1010
Joined: 16 March 2006

Postby ravel » Mon Jul 24, 2006 9:02 am

RW wrote:
Code: Select all
 *-----------*
 |..1|9.2|3..|
 |...|...|...|
 |6..|318|..4|
 |---+---+---|
 |8.5|...|6.7|
 |..2|...|5..|
 |4.6|...|8.1|
 |---+---+---|
 |2..|196|..3|
 |...|...|...|
 |..9|5.3|1..|
 *-----------*

I saw the UR elimination (2 numbers in r9c9), but i could not find a BUG-lite+1. Can you point me to it, please?
Code: Select all
..36.49.....7.2...6.......435.....98.........82.....755.......6...9.7.....12.68..

Solved it with a UR type 4 and a UR+2kx (elimination in r5c8) and BUG+1, again was blind for the BUG-lite+.
ravel
 
Posts: 998
Joined: 21 February 2006

Postby Carcul » Mon Jul 24, 2006 10:41 am

Ravel wrote:I saw the UR elimination (2 numbers in r9c9), but i could not find a BUG-lite+1. Can you point me to it, please?


The AUR in cells r19c89 solves the puzzle. Also, you have a BUG-lite+1 in cells r456c26 that forces r6c6=5 (and that also solve the puzzle in conjunction with the UR in r46c58).

Carcul
Carcul
 
Posts: 724
Joined: 04 November 2005

Postby ravel » Mon Jul 24, 2006 11:08 am

Carcul wrote:Also, you have a BUG-lite+1 in cells r456c26 that forces r6c6=5

Thanks, but i thought there is one without using an x-wing.
RW wrote:... BUG-lite+1 + X-wing + UR type 4, or BUG-lite+1 + XY-wing ...

(Hm, thought i had already posted this:) Either the x-wing or the xy-wing has to be applied (with a hidden pair) to get the BUG-lite+1.
ravel
 
Posts: 998
Joined: 21 February 2006

Postby RW » Mon Jul 24, 2006 9:29 pm

ravel wrote:Either the x-wing or the xy-wing has to be applied (with a hidden pair) to get the BUG-lite+1.

:?:After singles, and a hidden pair:
Code: Select all
 *-----------------------------------------------------------*
 | 5     48    1     | 9     467   2     | 3     678   68    |
 | 9     3     48    | 467   4567  457   | 27    1     268   |
 | 6     2     7     | 3     1     8     | 9     5     4     |
 |-------------------+-------------------+-------------------|
 | 8    *19    5     | 24    234  *19    | 6     23    7     |
 | 3    *17    2     | 678   678  *17    | 5     4     9     |
 | 4    *79    6     | 27    2357 *79+5  | 8     23    1     |
 |-------------------+-------------------+-------------------|
 | 2     5     48    | 1     9     6     | 47    78    3     |
 | 1     6     3     | 2478  2478  47    | 247   9     5     |
 | 7     48    9     | 5     248   3     | 1     268   268   |
 *-----------------------------------------------------------*
r6c6=5

Then some more singles and one box/line interaction gets here
Code: Select all
 *-----------------------------------------------------------*
 | 5     48    1     | 9     467   2     | 3     678   68    |
 | 9     3     48    | 467   5    *47    |*27    1     268   |
 | 6     2     7     | 3     1     8     | 9     5     4     |
 |-------------------+-------------------+-------------------|
 | 8     1     5     | 24    234   9     | 6     23    7     |
 | 3     7     2     | 68    68    1     | 5     4     9     |
 | 4     9     6     | 27    237   5     | 8     23    1     |
 |-------------------+-------------------+-------------------|
 | 2     5     48    | 1     9     6     | 47    78    3     |
 | 1     6     3     | 2478  2478 -47    |*24    9     5     |
 | 7     48    9     | 5     248   3     | 1     268   268   |
 *-----------------------------------------------------------*
r8c6<>4

Puzzle then solves with singles. And as you both pointed out, the UR in r19c89 solves the puzzle in one step. Well done!

I know the Advanced BUG-lite is tough, I could probably have found an easier one. But it's definitely not any harder than manually spotting ALS-eliminations in a grid with few solved cells. This advanced BUG-lite technique is actually one that I use all the time, sort of AUR extended to 'almost BUG-lite'. I can give you a hint: the possible deadly pattern is in r357c23. As it is with some strong links it allows one immediate elimination (r5c3<>7), but ignore that. You would only destroy the pattern for the move that solves the puzzle. Instead look for some interaction with a few bivalue cells. The xy-chain is actually quite long if examined as a normal xy-chain (7 cells), but only four steps is needed if you read the hidden singles instead of naked singles (like I usually do).

Good luck!
RW
RW
2010 Supporter
 
Posts: 1010
Joined: 16 March 2006

Gurths symmetrical placement

Postby ravel » Mon Aug 07, 2006 8:35 am

Code: Select all
 +-------+-------+-------+
 | . . 7 | . . . | . . . |
 | . . . | . 3 4 | . 7 6 |
 | . . . | 1 . 7 | 5 . 3 |
 +-------+-------+-------+
 | 2 . . | 3 . . | . . 8 |
 | 8 . . | . . . | . . 5 |
 | 5 . . | . . 6 | . . 1 |
 +-------+-------+-------+
 | 6 . 8 | 4 . 2 | . . . |
 | 3 4 . | 7 6 . | . . . |
 | . . . | . . . | 4 . . |
 +-------+-------+-------+
ravel
 
Posts: 998
Joined: 21 February 2006

Postby RW » Mon Aug 07, 2006 9:55 am

ravel wrote:
Code: Select all
 +-------+-------+-------+
 | . . 7 | . . . | . . . |
 | . . . | . 3 4 | . 7 6 |
 | . . . | 1 . 7 | 5 . 3 |
 +-------+-------+-------+
 | 2 . . | 3 . . | . . 8 |
 | 8 . . | . . . | . . 5 |
 | 5 . . | . . 6 | . . 1 |
 +-------+-------+-------+
 | 6 . 8 | 4 . 2 | . . . |
 | 3 4 . | 7 6 . | . . . |
 | . . . | . . . | 4 . . |
 +-------+-------+-------+


r5c5=9 and the puzzle is solved...

Very interesting technique! I must digest it for a while, but Gurths theory seems to be quite waterproof.

RW
RW
2010 Supporter
 
Posts: 1010
Joined: 16 March 2006

PreviousNext

Return to General