Instead he removes all (k-1)-digit templates, which are not compatible with any other digit. So a template/candidate elimination can be made, which depends on a set of k-templates including all 9 digits.
Simple example: Though the 3-template 128 is possible as i posted it, it then can be deleted, because in a 126-template 12 can't be in r6c46.
- Code: Select all
+-------+-------+-------+ +-------------------------+-----------------------+----------------------+
| 8 2 . | . 1 . | . . . | | 128 2689 3 | 4 15 568 | 7 58 69 |
| . . . | 8 . . | 1 2 . | | 48 5 468 | 3678 378 9 | 1 2 36 |
| . . 1 | . 2 . | . 8 . | | 7 689 1689 | 136 2 3568 | 48 458 369 |
+-------+-------+-------+ +-------------------------+-----------------------+----------------------+
| 2 1 . | . . . | . . 8 | | 23 1 49 | 5 34 7 | 29 6 8 |
| . 8 . | . . . | 2 1 . | | 6 2348 45 | 38 9 2348 | 25 1 7 |
| . . . | 1 8 2 | . . . | | 258 2789 57 |*16 18 *26 | 59 3 4 |
+-------+-------+-------+ +-------------------------+-----------------------+----------------------+
| . . 2 | . . 8 | . . 1 | | 345 34678 2 | 9 34578 3458 | 3468 48 1 |
| 1 . . | . . . | 8 . 2 | | 1345 34678 145678 | 378 34578 3458 | 3468 9 2 |
| . . 8 | 2 . 1 | . . . | | 9 348 48 | 2 6 1 | 348 7 5 |
+-------+-------+-------+ +-------------------------+-----------------------+----------------------+
Other deletions will be very hard to explain.