PIsaacson wrote:But, I have a question about BUG Type 3 processing. Looking at the source code, it appears that there is no provision in SE for hidden locked sets, just naked sets generated by the LBM digits. Since the cells involved in generating the naked set don't need to share the same 2 values in the non-LBM candidates, I'm not sure that a hidden set makes any sense, unless it's on the LBM candidates??? Am I asking this correctly??? I can't find any examples of BUG Type 3 hidden sets anywhere and even the BUG Type 3 naked set appears to be really rare anyways. I'm just trying to ensure that all Type 3 patterns are handled in a similar fashion, if feasible.
So, is there a collection of BUG Type 3s anywhere with quads or higher so I can check for hiddens somehow???
Cheers,
Paul
I went thru the files and puzzles of the pattern game having the appropriate rating. I have seen no template in the comment for "hidden sets" in bugs and, as far as I remember, I preprocessed all examples and found none either.
SE rates Bugs with naked quads and bugs with naked (5).
the puzzles below should be examples of theese (ratings 6.0 and 6.1)
champagne
100000002030040050005607800004105900000000000007804200006209500070050060900000008 6.00 1.20 1.20
001000002090008030600090100000002000030040010000500000002030004080100090700000600 6.00 1.20 1.20
000090000008607100020000030100000007050402080009000200040020010001000900000050000 6.00 1.20 1.20
010002000340000000005036000000700809002000300906005000000190700000000043000800050 6.00 1.20 1.20
000000160000870000003000590070000004030080009000006000501000300706000000000420000 6.00 1.20 1.20
0046000000100085009000000705002000600000500000700000080600000010019000200000073046.00 1.20 1.20
0000000000012345000305060100130007400700000500560001800408020300076419000000000006.00 1.50 1.50
0000800000014056000700000204000000050800000900051034000900200803000100020000000006.00 1.50 1.50
0000600000014032000900000807000000010108090500040003000500700900080004000000100006.00 1.50 1.50
1030007000200000505000048060002091000000000000087060004013000080700000900060005076.00 2.00 2.00
1020304050000000004001060020070006008000200040050008002007030090000000005080402036.00 2.00 2.00
0000000000670005800307020400010209000009080000060503000504060300480001700000000006.00 2.30 2.30
0007030000090506000508000040070000890000400006300001004000060200020703000001020006.00 2.60 2.60
0006870000020007000600000309000030018000000076001000020300000400050008000002940006.00 2.60 2.60
0001230000004050000020006002700000463000000074500000380090001000006010000008570006.10 1.20 1.20
0000000000012345000201060700670002800900000400540007100408010200023678000000000006.10 1.20 1.20
0000000000640005800802030900090301000009050000070108000907020600580009400000000006.10 1.20 1.20
0200000400405070806090007030009060000040001000004010005070008020802050600100000906.10 1.20 1.20
3080004000900000705000049060007061000000000000021030006094000080200000100030006046.10 1.20 1.20
0100090003400000000020350000009006050090007007050020000001408000000000340007000206.10 1.20 1.20
0000000000012034000201050600540002700000900000730006800408060300024091000000000006.10 1.20 1.20
0000000000120003400305060100070408000002080000030705000709010200250004900000000006.10 2.00 2.00
0000000000082034000435016200340007600000000000520008400156073800074025000000000006.10 2.00 2.00
0000000000043058000209070100780006500000000000510004300102030900036087000000000006.10 2.30 2.30