Serg wrote:Hi,
eleven!
eleven wrote:I got 2 times the same 560 grids from 100K puzzles (and four 10.4 puzzles in 1 hour).
So different to the Pi/Sticks symmetry the 90°digit symmetry (which seems to have harder puzzles) should be calculable in reasonable time.
I've done exhaustive search for solutions grids having quarter turn symmetry. You are right. There exist 560 essentially different such solution grids. Program ran less than 1 second, plus gridchecker execution (sorting out isomorphs) - several seconds. I have used
blue's method.
I had 560 as well, but see the note at the bottom of this post.
For the Pi/Sticks symmetry (equivalent to "row sticks"+"column sticks") ... I got 2320 "ED" solution grids, using this as a seed grid:
- Code: Select all
. . 5 | . . . | . . .
. . . | 6 4 5 | . . .
. . . | . . . | . . 5
------+-------+------
. 5 . | 1 2 3 | . 8 .
. 8 . | 4 5 6 | . 2 .
. 2 . | 7 8 9 | . 5 .
------+-------+------
5 . . | . . . | . . .
. . . | 5 6 4 | . . .
. . . | . . . | 5 . .
I did the search for minimal puzzles having the same kind of shape symmetry, and got an amazingly small number of them: 62 (listed below).
There were 2^25 shapes for this one too ... the same as for double diagonal symmetry ... but my trick to reduce the number that needed to be tested, didn't work well at all. The smallest valid puzzles were too few, and too large, to be of much help. About 29,000,000 shapes needed to be tested, for each grid.
Then I came up with something to work the other end of the size scale as well, though, and it worked wonders. A lot of the grids needed under a million tests, and none of them needed over 2.4 million. The average was 1.2 million.
What I did, was find the (minimal) unavoidable sets with size <= 9, and for each one:
- figure out the smallest symmetrical shape that covers the UA set
- take its complement, giving the largest symmetrical shape that fails to hit the UA set.
- set the "skip me" flag for that shape and all of its (symmetric) subset shapes.
The minmal puzzles are here:
.32..74..7....41..4....1.98......987.........321......21.9....6..96....3..63..87.
..29..4..9..6..3..4..3....8......987.........321......2....7..6..7..4..1..6..18..
1..8...368..6..2...962..7...8.1.3...7.9...1.3...7.9.2...3..841...8..4..247...2..9
.42..76...7...4.1.6....1.48789.....................12326.9....4.9.6...3...43..86.
..29..4....9..4..34..3....8.5....987.........321....5.2....7..67..6..1....6..18..
..29..4....9..4..34..3....8......987.8.....2.321......2....7..67..6..1....6..18..
..29..4....9..4..34..3....86.4...987.........321...6.42....7..67..6..1....6..18..
..29..4....9..4..34..3....8......9879.7...3.1321......2....7..67..6..1....6..18..
..29..4....96....34..3....8......987.........321......2....7..67....41....6..18..
1..9..4.5..8..4..24.53..7..789.....................123..3..75.68..6..2..5.6..1..9
1..9..5.4..8..4..25.43..7..789.....................123..3..76.58..6..2..6.5..1..9
1..9.8..4..8..4..2..43.27..7.9....8...........2....1.3..38.76..8..6..2..6..2.1..9
1..9..4.5..2..4..84.53..7..7.9...684.........624...1.3..3..75.62..6..8..5.6..1..9
1..9..5.4..2..4..85.43..7..7.9....8...........2....1.3..3..76.52..6..8..6.5..1..9
..29..6....96....36..3....89.7....8.3.1...9.7.2....3.12....7..47....41....4..18..
1..9..2.4..9..4..38.43..7...8....4.63.1...9.74.6....2...3..76.27..6..1..6.8..1..9
.3.9..2.4..9..4..38.43...9..8....4.63.1...9.74.6....2..1...76.27..6..1..6.8..1.7.
1.2.97..6.7.6...1...6.317.87.9....8...........2....1.32.397.4...9...4.3.4..31.8.9
1..2.7.6.2..6..8...6.8.17..9.7...486.........426...3.1..39.2.4...2..4..8.4.3.8..9
.3...72.6..76....18.6..1.9..8....6.43.1...9.76.4....2..1.9..4.29....43..4.83...7.
1.623...89....43....289.7.67.9....8...........2....1.34.3.128....76....12...784.9
..29..6..83...429.6..3....8.8....9.7.........3.1....2.2....7..4.186...72..4..18..
...83.5.69..6..3..5.629.....8....9.7.........3.1....2.....184.5..7..4..14.5.72...
..5..7.38...6......92..1..54.6....8.7.9...1.3.2....4.65..9..81......4...27.3..5..
...8.7.9687.6..21..362.1....8....9.7.........3.1....2....9.847..98..4.3241.3.2...
..53..8.49..6..3..2.49....5789.....................1235....16.8..7..4..16.2..75..
14.3.2.....8..4..2...9.874.7.9...486.........426...1.3.632.1...8..6..2.....8.7.69
14.3.8.....2..4..8...9.274.7.9...486.........426...1.3.638.1...2..6..8.....2.7.69
..53..8.6.7.6...1.2.69....5987.....................3215....14.8.9...4.3.4.2..75..
...3..2.6..9..4..38.69......8....6.43.1...9.76.4....2......14.27..6..1..4.8..7...
..29..4..9....43..4..3....8......987.........321......2....7..6..76....1..6..18..
.329..4.59....43..4.53...986.41.3.8...........2.7.96.421...75.6..76....15.6..187.
..29..4..9....43..4..3....8.8....9.7.........3.1....2.2....7..6..76....1..6..18..
..89..4..9....43..4..3....2.8....9.7.........3.1....2.8....7..6..76....1..6..12..
..49..5..9.8..43.25..3....4.8....9.7.........3.1....2.6....7..58.76..2.1..5..16..
...3..4.89..6..3..4.29...........987.........321...........18.6..7..4..12.6..7...
.3.9..4.2..96....34.83...9..8....9.7.........3.1....2..1...72.67....41..8.6..1.7.
..29..6....96....36..3....8......987.........321......2....7..47....41....4..18..
.3.9..6.2..96....36.83...9..8....9.7...4.6...3.1....2..1...72.47....41..8.4..1.7.
.3.9..6.2..9..5..36.83...9..8....9.7...4.6...3.1....2..1...72.47..5..1..8.4..1.7.
..89..4....9..4..34..3....2......987.........321......8....7..67..6..1....6..12..
..89..46...9..4..346.3....2.8....9.7.........3.1....2.8....7.467..6..1...46..12..
..59..4..8.9..42.34..3....5.8....9.7.........3.1....2.5....7..67.86..1.2..6..15..
..49..5..8.9..42.35..3....4.8....9.7.........3.1....2.6....7..57.86..1.2..5..16..
..89..5....9..4..35..3....2486...9.7.........3.1...4268....7..57..6..1....5..12..
..59..2....9..4..38..3....5486...9.7.........3.1...4265....7..27..6..1....8..15..
..29..6....9..4..36..3....8......987.........321......2....7..47..6..1....4..18..
.3.9..6.2..9..4..36.83...9..8....9.7....5....3.1....2..1...72.47..6..1..8.4..1.7.
.3.9..6.2..956...36.83...9..8....9.7.........3.1....2..1...72.47...451..8.4..1.7.
.3.9..6.2..95....36.83...9..8....9.7...4.6...3.1....2..1...72.47....51..8.4..1.7.
..23..49...9.45..343.9....8......987.........321......2....1.767..56.1...16..78..
..2..7.34.....4....94..1..8789.....................1232..9..61....6.....67.3..8..
..2..7.36...6......96..1..8789.....................1232..9..41......4...47.3..8..
..6..7.358..6..2...95..1..6789.....................1234..9..51...8..4..257.3..4..
..2..763...76....169...1..87.9.2.....8.....2.....8.1.32..9...149....43...743..8..
..2..763.8.76..2.169...1..87.9....8...........2....1.32..9...149.8..43.2.743..8..
..23..69...9..4..363.9....8......987.........321......2....1.747..6..1...14..78..
..8..763...76....169...1..27.9.2..8...........2..8.1.38..9...149....43...743..2..
...3..6.8..9..4..36.29...........987.........321...........18.47..6..1..2.4..7...
...3..6.2..95....36.89......8....9.7...4.6...3.1....2......12.47....51..8.4..7...
14.3....2..9..4..3..89..74.4861.3...............7.9426.63..12..7..6..1..8....7.69
.4.3.82.5..9..4..38.59.2.4..8....9.7.........3.1....2..6.8.15.27..6..1..5.82.7.6.
None of them were especially hard -- 9.2, was the highest SE rating.
All of them had at least 24 givens, and only one of them used r5c5.
There was one with size 36:
- Code: Select all
. 3 2 9 . . 4 . 5
9 . . . . 4 3 . .
4 . 5 3 . . . 9 8
6 . 4 1 . 3 . 8 .
. . . . . . . . .
. 2 . 7 . 9 6 . 4
2 1 . . . 7 5 . 6
. . 7 6 . . . . 1
5 . 6 . . 1 8 7 . ED=8.5/7.2/7.2
---
A topic for another day: The '560' number for quarter turn symmetry, is
also the number of general minlex solution grids (i.e. of 5.4e9), that have at least one transformation to a form that shows quarter turn symmetry. The numbers that
eleven has given, and possibly
Serg too, depending on how he used 'gridchecker' , seem to be that kind of number. That isn't quite what I've been calculating, which is more like the number of "symmetrically minlex" solution grids, that actually
do show the symmetry. The difference would come down to what kinds of transformations are allowed, in producing the "minlex" grids from initial grids showing the symmetry -- any transformation at all, or only those that preserve the corresponding shape symmetry. For arbitrary symmetry types, it isn't clear to me, that the two kinds of numbers should match. Maybe I'm missing something ?