SudokuX (Diagonal Sudoku)

For fans of Killer Sudoku, Samurai Sudoku and other variants

Re: SudokuX (Diagonal Sudoku)

Postby m_b_metcalf » Sun Apr 05, 2020 9:16 am

creint wrote:My solver solved all except these 62:

One assumes that these are the hardest. I ran your file through SE, and here are the highest ratings for each ER found:

Code: Select all
.................12...3........4.52..6........17..8...............8.............7 32  ED=8.3/1.2/1.2   
.................12.....3.......2....4.......3..5......6.............7...1..8...4 31  ED=9.0/1.5/1.5   
................1..2..........3..4.5.6........7..6....3.....8..........2..8...... 46  ED=9.1/1.2/1.2   
.................12.......3...........4.567..........83.......28............9.... 29  ED=9.2/2.3/2.3   
...............1..2.3.4............5...1.6...........7....3.4......8.....6....... 56  ED=9.3/2.9/2.9   
.................12.3.4............5...6........2....7....3.4......8.....6....... 34  ED=9.4/2.9/2.9     
.............1.....2...3.4............5.6.7......8.....4.....2.......5..7........ 61  ED=9.5/2.9/2.9   
....................1..23......4......3...1......5......6.....45..78.............  6  ED=9.6/3.4/2.9   
....................1.2.3..............4.5.67..........6.....745............8.... 12  ED=9.7/2.3/2.3   
................1.23...4............5.6.7.8............4......2............71.... 54  ED=9.8/2.9/2.9     
..................12.....34..............3.42..5........6.7.8..........1......... 16  ED=9.9/9.9/2.9   
....................1..23......4......3...1......5...65..................7..8..4.  7  ED=10.0/ 4.3/ 2.9
................1.2....3....4........1..5..4..................67.....3.2....8.... 50  ED=10.1/ 2.9/ 2.9
.................1....2.3..14...........5....67.........2...8.......6......4..... 20  ED=10.3/10.3/ 2.9
....................1.2.3........4.....5.6..7....8....65.....8.....3............. 14  ED=10.4/ 1.5/ 1.5
.................1.2.............34.1.5........6.........5......3........7..8...5 25  ED=10.6/ 1.2/ 1.2

Except for 29, they all have only eight distinct digits.
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13639
Joined: 15 May 2006
Location: Berlin

Re: SudokuX (Diagonal Sudoku)

Postby Leren » Fri Jan 21, 2022 7:42 pm

FWIW the list of 12 Clue Sudoku X puzzles is now 552,950. You can get a copy of the list by using the following file access link.

Copy the part of the link between the " " symbols and paste it into the URL box of a new tab in your browser and the file should download.

"http://gpenet.pagesperso-orange.fr/downloads/SudokuX12.xlsx"

Leren
Leren
 
Posts: 5128
Joined: 03 June 2012

Re: SudokuX (Diagonal Sudoku)

Postby Ruud from Sudocue » Sat Jan 22, 2022 9:21 am

Thanks for posting the list.

While my own collection had already grown to 35107, it turns out that it only contains 2 new entries to your list:
Code: Select all
000000000000000001230000000000004000005000000000600050000000720007000000001080000
000000000000001000002000034000005000000000200060000000340000000000007500008000000

I've also switched to the canonicalization method everyone else is using, no longer separating clue positions and values.

Ruud
Ruud from Sudocue
 
Posts: 14
Joined: 10 December 2021

Re: SudokuX (Diagonal Sudoku)

Postby Leren » Sun Dec 10, 2023 4:38 am

Further work by myself and ton has raised the number of known 12 Clue Sudoku X puzzles to 558,389.

Leren
Leren
 
Posts: 5128
Joined: 03 June 2012

Re: SudokuX (Diagonal Sudoku)

Postby Leren » Sun Nov 24, 2024 4:46 am

Further work by myself and ton this year has raised the number of known 12 Clue Sudoku X puzzles to 558,981.

Leren
Leren
 
Posts: 5128
Joined: 03 June 2012

Re: SudokuX (Diagonal Sudoku)

Postby m_b_metcalf » Sun Nov 24, 2024 9:25 am

Brilliant!

Mike
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13639
Joined: 15 May 2006
Location: Berlin

Re: SudokuX (Diagonal Sudoku)

Postby m_b_metcalf » Sun Nov 24, 2024 9:35 pm

Leren wrote:Whilst Mathimagics has not found an 11 clue puzzle yet, the following 11 clueset
Code: Select all
......78............9.........................1.5.........4.....3....5.1....98...

has just 2 ESX solutions

Leren,
Can you tell whether this is an isomorph of your pseudo-puzzle above?
Code: Select all
.......................1..2.1................3..4...........54.......3...67..2...


It also has 2 solutions.

Thanks,

Mike
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13639
Joined: 15 May 2006
Location: Berlin

Re: SudokuX (Diagonal Sudoku)

Postby Leren » Mon Nov 25, 2024 5:21 am

Hi Mike,

Here are the minlex forms of the two 11 clue cluesets.

Code: Select all
................1...2..3...4........15............6...........4..6.....7..3......
.......................1..2.1................3..4...........54.......3...67..2...

I call 11 clue cluesets with just two solutions "Almosts" and I've found 67 of them here.

Hidden Text: Show
Code: Select all
..........................1........2....3..4....5.....12...........4.56..7.......
........................1..............2....3...4.....23..5........6.41.......7..
.......................1..2.1................3..4...........54.......3...67..2...
.......................1..223.4............5........6...6..5.7..................3
......................1...2......3........45...1.26.............3.4.............7
....................1.....2.....................3...4..5..12.......6....7.....43.
....................1.....2........1........34..5............6.......4...72...5..
....................1.....2......3......3.14.5................5...6.2..7.........
....................1.....2...2.....3.....4.......4..........5...6..1...7......3.
....................1...2..............345.........6..57......3....6...........7.
....................1...2.............3...4......56...57..........2..8...6.......
....................1...2........3.4...5.6........7...76.....5.....3.............
....................1..23......4............5....6....47............1.2..6.......
....................1..23.....45.......6.............74......6......3........7...
....................1.2...3............4........5.........3.........6...78....45.
....................1.2..34.....56.............3..........4..........5..6.....7..
....................1.2.3...............4.2...5........6.....57....1.....7.......
....................1.2.3........1...4.5...........6.........47..6.............5.
...................1......2............2.3.1...4...5....6.5.4...........7........
...................1......2......34....1.2......5.......4.3.6.........7..........
...................1......2......34....2.1......5.......4.3.6.........7..........
...................1..2..3.....1......4.....5....3......6...7...........5.......6
.................1.....2.........34.......5...6..71.....4...............3.......2
.................1....2...3.........4.......2...5.......6...75.....3...........6.
.................1..1............23.......4....5..6...........7.2.4.............5
.................1..1.....2...........3.....4...5..........2....6....5........67.
.................1..1.....2...........3.....4...5.........3.67.4...............5.
.................1..1.....2......34.......5......26.............4.3.............7
.................1..2...........3............4..5.........6........21...7.....54.
.................1..2...........3.....4.....5...6.........15....7....6.........3.
.................1..2.....3................4....5...6......3..7.....1...6......5.
.................1..2.....3....4..........25.....6.7..6.......4............7.....
.................1..2..3................4.2.....5.....31......6........5..7......
.................1.2......3..........3.1.2.........4....5.4.6...........7........
.................1.2....3.....4...............5...........6....4.1.....7....32...
.................1.23.........4............5......6...........71.....2....4.5....
.................12.......3.......4.......56..1.........6......3.......74........
.................12.....3.......4....5.......6..2......1..........6......7......5
.................12....3...3....2...........4...5....................6...14.....7
................1......2.....3....................4...25....6.....13.....6.7.....
................1......2.....3...........45.......5....4....6......3.......17....
................1......2...3.............4..5.....6......17........3......5.....2
................1...2................3.....45.....6...2.7........6..........4..3.
................1...2............3........4.5...6.....5...3........2..7........6.
................1...2...........3......4.5....2.....61...7.......5...4...........
................1...2...3......4.................5.6...4.....57...3........6.....
................1...2...3......4.......5.6.....1...7...4......5..............3...
................1...2..3...4........15............6...........4..6.....7..3......
................1...2.3..............24....5.....6.............6.7.....3...1.....
................1...2.3.4........3.....5.6........7....6......5....1.............
................1..2...........23.....4....5.....6.....6............437..........
................1..2......3...........4.5.......6......3......2....1..4..7.......
................1.2....3.............1..4..5..........6...5....7.....3.2.........
................1.23.................4..5..6.......7..7................2....6..3.
...............1......2..............3..........4.5..........431.5.6...........7.
...............1......2..........3....4.5.....6....7..............3.1..........52
...............1....2.....3...................4.5.........6........23...7.....45.
...............1...2...3........4.2.5.1......6..............6...7........3.......
...............1..2...34......5...........................6..27..8.......15......
...............1.234............................5...4....4...56..7........2......
..............1.....2....3......4.....................5..32.....6....7.4....8....
..............1....2.....3.......2..4..............5.1.......4..5..............67
.............1.....2.....34.............5.1....6............7..4.........3....6..
..........1......2..3.....4........1.........5..6............7......26.........5.
........1......2....2...3............4.5...........6..5.......4....6...........7.
........1.....2....3....4.........................5...2........6.5..........7.34.
.......1.........2........3....................45.....12...6.........4.5......7..

The first of yours is number 48 and the second is number 3. Only four Almosts have 8 different digits in the clues. Numbers 11, 15, 59 & 61.

Cheers, Leren
Leren
 
Posts: 5128
Joined: 03 June 2012

Re: SudokuX (Diagonal Sudoku)

Postby m_b_metcalf » Mon Nov 25, 2024 7:38 pm

Leren,
Thanks for that interesting post. I took a closer look at your numbers 11, 15, 59 & 61, which have 8 distinct clue values. The first one has only 4 clues that can't be solved: it contains a U4 at r6c13 and r8c13. Adding a correct clue at the appropriate location in turn, see below, yields 4 valid 12-clue puzzles, the second 2 of which I find in yoour huge file. I can't tell whether the first 2 are new or aleady known.

A similar exercise can be performed on the other 3 pseudo-puzzles.

Code: Select all
....................1...2.............3...4......56...57..........2..8...6.......   Your 11


Code: Select all
 . . . . . . . . .
 . . . . . . . . .
 . . 1 . . . 2 . .
 . . . . . . . . .
 . . 3 . . . 4 . .
 9 . * . 5 6 . . .
 5 7 . . . . . . .
 * . * 2 . . 8 . .
 . 6 . . . . . . .

 . . . . . . . . .
 . . . . . . . . .
 . . 1 . . . 2 . .
 . . . . . . . . .
 . . 3 . . . 4 . .
 * . 4 . 5 6 . . .
 5 7 . . . . . . .
 * . * 2 . . 8 . .
 . 6 . . . . . . .

 . . . . . . . . .
 . . . . . . . . .
 . . 1 . . . 2 . .
 . . . . . . . . .
 . . 3 . . . 4 . .
 * . * . 5 6 . . .
 5 7 . . . . . . .
 4 . * 2 . . 8 . .
 . 6 . . . . . . .

 . . . . . . . . .
 . . . . . . . . .
 . . 1 . . . 2 . .
 . . . . . . . . .
 . . 3 . . . 4 . .
 * . * . 5 6 . . .
 5 7 . . . . . . .
 * . 9 2 . . 8 . .
 . 6 . . . . . . .


Code: Select all
....................1...2.............3...4..5...67...68..........2..9...7.......                   1 (renumbered)
....................1...2.............3...4....4.56...57..........2..8...6.......                   2
....................1...2.............3...4......56...57.......4..2..8...6.......                   3
....................1...2.............3...4......56...57.........82..9...6.......                   4  (renumbered)


Regards,

Mike
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13639
Joined: 15 May 2006
Location: Berlin

Re: SudokuX (Diagonal Sudoku)

Postby Leren » Tue Nov 26, 2024 3:30 am

The results from Almost number 11 indicate the following :

Code: Select all
246981735857423961391567248715834629683192457429756183578649312934215876162378594 Solution 1
246981735857423961391567248715834629683192457924756183578649312439215876162378594 Solution 2

111111111222222222333333333444444444555555555666666666777777777888888888999999999 Row
123456789123456789123456789123456789123456789123456789123456789123456789123456789 Column
*********************************************4*4***************4*4***************
*********************************************9*9***************9*9***************

There is a hitset in the 4 indicated cells on 2 digits 4 and 9. Putting any of these in place will produce a unique solution (one of the indicated solutions).

Code: Select all
....................1...2.............3...4..4...56...57..........2..8...6.......
....................1...2.............3...4..9...56...57..........2..8...6.......
....................1...2.............3...4....4.56...57..........2..8...6.......
....................1...2.............3...4....9.56...57..........2..8...6.......
....................1...2.............3...4......56...57.......4..2..8...6.......
....................1...2.............3...4......56...57.......9..2..8...6.......
....................1...2.............3...4......56...57.........42..8...6.......
....................1...2.............3...4......56...57.........92..8...6.......

Minlexed version of these :

Code: Select all
....................1...2.............3...4.....56...3.......76..8..1..........5.
....................1...2.............3...4.....56...7.......86..9..1..........5.
....................1...2.............3...4.....56.3.........67........5..8..1...
....................1...2.............3...4.....56.7.........68........5..9..1...
....................1...2.............3...4......56...57.......4..2..8...6.......
....................1...2.............3...4......56...57.......8..2..9...6.......
....................1...2.............3...4......56...57.........42..8...6.......
....................1...2.............3...4......56...57.........82..9...6.......

These 8 minlexed puzzles are all in the list.

The results for Almost number 1 (seven different digits in the clueset) are similar but more complex.

Code: Select all
543217689718659423692483751854761392267938145931524876126875934389142567475396218 Solution 1
543217698719658423682493751954761382267839145831524976126975834398142567475386219 Solution 2

111111111222222222333333333444444444555555555666666666777777777888888888999999999 Row
123456789123456789123456789123456789123456789123456789123456789123456789123456789 Column
*******88**8**8****8**8****8******8****8*8***8*****8*****8**8***88**********8***8
*******99**9**9****9**9****9******9****9*9***9*****9*****9**9***99**********9***9

There is an 18 cell hitset on 2 digits 8 and 9. This might suggest that 36 ED puzzles might arise. However, putting 8 or 9 in each cell will result in two puzzles with the same minlex form, so 18 puzzles will be in the list.

Leren
Leren
 
Posts: 5128
Joined: 03 June 2012

Re: SudokuX (Diagonal Sudoku)

Postby m_b_metcalf » Tue Nov 26, 2024 4:13 pm

Leren wrote:These 8 minlexed puzzles are all in the list.

Leren,
Yes, in my rush I overlooked the other four. It looks as though you have this well wrapped up, but I'd nevertheless like to try my luck with a final batch of 13 12--clue puzzles that I found:
Code: Select all
..1...........1.....2....3......4.....................5..32.....6....7.4....8....                   1
....................1.2...3..4.........4........5.........3.........6.3.78....45.                   2
....................1.2...3..4.........5........4.........3.........6...78....54.                   3
....................1.2...3............4.......56.........3........67...58....46.                   4
....................1.2...3............4.......45.........3........56...78....45.                   5
....................1.2...3........4...5........4.........3........46...78....54.                   6
....................1.2...3........4...4........5.........3........56...78....45.                   7
....................1.2...3............4....5...5.........3........56...78....45.                   8
....................1.2...3............4....5...6.........3........67...58....46.                   9
....................1.2...3............4........5....4....3........56...78....45.                   10
....................1.2...3............4........5....6....3........57...68....45.                   11
....1.........2.....3....4......5.....................6..43.....7....1.5....8....                   12
.......1......1.....2....3......4.....................5..32.....6....7.4....8....                   13




Thanks,

Mike
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13639
Joined: 15 May 2006
Location: Berlin

Re: SudokuX (Diagonal Sudoku)

Postby Leren » Tue Nov 26, 2024 11:49 pm

Hi Mike,

All except four of your puzzles have 13 clues. The minlexed 12 clue puzzles are in the list.

Leren
Leren
 
Posts: 5128
Joined: 03 June 2012

Re: SudokuX (Diagonal Sudoku)

Postby m_b_metcalf » Wed Nov 27, 2024 7:45 am

Leren wrote:All except four of your puzzles have 13 clues. The minlexed 12 clue puzzles are in the list.

Whoops, my bad. Thanks.
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13639
Joined: 15 May 2006
Location: Berlin

Re: SudokuX (Diagonal Sudoku)

Postby jco » Thu Jan 16, 2025 9:45 pm

Hi!

Is there a list of hardest 6x6 sudoku-X puzzles ?
I am a bit curious about the highest rating that one can get.
This is so because I have solved many 6x6 sudoku hardest puzzles,
but got nowhere with this puzzle generated by Sudoku 6 Explainer:
Code: Select all
+-------+-------+
| . 4 . | . . . |
| 3 . . | 1 . . |
+-------+-------+
| 5 6 . | . . . |
| . . . | . . . |
+-------+-------+
| . . . | . . . |
| . . . | . . . |
+-------+-------+
.4....3..1..56...................... X  SE = 8.7


After basics, and 13 steps (chains, mostly fishes of some kind and a few krakens), I gave up without getting a single digit!

Thanks in advance.
JCO
jco
 
Posts: 777
Joined: 09 June 2020

Re: SudokuX (Diagonal Sudoku)

Postby philvo » Fri Jan 17, 2025 2:16 pm

Very nice puzzle. It is the hardest 6x6 X-sudoku I have solved. It is rated 21 by my solver.
Up to now, the hardest 6x6 X-sudokus were rated 20.
phil
philvo
 
Posts: 82
Joined: 18 January 2022

Previous

Return to Sudoku variants