Mathimagics wrote:Interesting that the number of unique grids (6.5 billion) is similar to standard Sudoku (5.5 billion).
Mathimagics wrote:Table of Class #, NE = number of equivalent classes, NG = number of grids, total = NE * NG:
- Code: Select all
# NE SudokuP Total SudokuP
------------------------------------------
1 1 969,349,902 969,349,902
2 18 728,290,886 13,109,235,948
3 12 655,641,170 7,867,694,040
4 36 606,126,844 21,820,566,384
5 36 595,526,742 21,438,962,712
6 72 517,948,382 37,292,283,504
7 9 598,102,466 5,382,922,194
8 4 490,762,646 1,963,050,584
9 36 547,152,562 19,697,492,232
10 18 458,804,480 8,258,480,640
11 2 373,961,017 747,922,034
------------------------------------------
244 6,541,667,097 138,547,960,174
And 138,547,960,174 x 4 x 362,880 = 201,105,135,151,764,480
Serg wrote:It is surprising, that eleven found that Red Ed's post with "201,105,135,151,764,480" number. Well done, eleven!
G ==> T(G)
1 2 3 | 4 5 6 | 7 8 9 6 4 5 | 9 7 8 | 3 1 2
7 8 9 | 1 2 3 | 4 5 6 3 1 2 | 6 4 5 | 9 7 8
4 5 6 | 7 8 9 | 1 2 3 9 7 8 | 3 1 2 | 6 4 5
--------------------- ---------------------
2 1 7 | 6 3 4 | 5 9 8 4 6 3 | 8 5 9 | 7 2 1
5 9 8 | 2 1 7 | 6 3 4 7 2 1 | 4 6 3 | 8 5 9
6 3 4 | 5 9 8 | 2 1 7 8 5 9 | 7 2 1 | 4 6 3
--------------------- ---------------------
9 7 1 | 3 6 2 | 8 4 5 2 3 6 | 5 8 4 | 1 9 7
8 4 5 | 9 7 1 | 3 6 2 1 9 7 | 2 3 6 | 5 8 4
3 6 2 | 8 4 5 | 9 7 1 5 8 4 | 1 9 7 | 2 3 6
G ==> T(G)
1 2 3 | 4 5 6 | 7 8 9 8 7 9 | 1 3 2 | 6 4 5
5 4 6 | 7 8 9 | 3 2 1 3 1 2 | 6 4 5 | 9 7 8
7 9 8 | 3 2 1 | 4 5 6 6 5 4 | 9 7 8 | 1 3 2
--------------------- ---------------------
6 3 4 | 8 7 5 | 9 1 2 2 9 1 | 4 6 3 | 5 8 7
8 7 5 | 9 1 2 | 6 3 4 4 6 3 | 5 8 7 | 2 9 1
9 1 2 | 6 3 4 | 8 7 5 5 8 7 | 2 9 1 | 4 6 3
--------------------- ---------------------
3 6 1 | 5 4 7 | 2 9 8 9 2 8 | 3 1 6 | 7 5 4
4 5 7 | 2 9 8 | 1 6 3 1 3 6 | 7 5 4 | 8 2 9
2 8 9 | 1 6 3 | 5 4 7 7 4 5 | 8 2 9 | 3 1 6
G ==> T(G)
1 2 3 | 4 5 6 | 7 8 9 1 3 2 | 7 9 8 | 4 6 5
7 8 9 | 1 2 3 | 4 5 6 4 6 5 | 1 3 2 | 7 9 8
4 5 6 | 7 8 9 | 1 2 3 7 9 8 | 4 6 5 | 1 3 2
--------------------- ---------------------
2 1 4 | 5 9 8 | 6 3 7 3 1 7 | 9 5 6 | 8 2 4
6 3 7 | 2 1 4 | 5 9 8 8 2 4 | 3 1 7 | 9 5 6
5 9 8 | 6 3 7 | 2 1 4 9 5 6 | 8 2 4 | 3 1 7
--------------------- ---------------------
3 7 1 | 8 4 2 | 9 6 5 2 4 1 | 6 7 3 | 5 8 9
9 6 5 | 3 7 1 | 8 4 2 5 8 9 | 2 4 1 | 6 7 3
8 4 2 | 9 6 5 | 3 7 1 6 7 3 | 5 8 9 | 2 4 1
G ==> T(G)
1 2 3 | 4 5 6 | 7 8 9 1 3 2 | 7 9 8 | 4 6 5
6 5 4 | 8 7 9 | 3 2 1 8 9 7 | 6 4 5 | 2 3 1
8 7 9 | 2 1 3 | 6 5 4 6 4 5 | 3 1 2 | 8 9 7
--------------------- ---------------------
5 6 7 | 3 9 4 | 8 1 2 9 8 4 | 2 5 7 | 6 1 3
4 9 2 | 1 8 7 | 5 6 3 7 5 3 | 1 6 4 | 9 8 2
3 8 1 | 5 6 2 | 4 9 7 2 6 1 | 9 8 3 | 7 5 4
--------------------- ---------------------
9 4 8 | 6 3 1 | 2 7 5 5 7 6 | 8 2 1 | 3 4 9
2 1 6 | 7 4 5 | 9 3 8 3 1 8 | 4 7 9 | 5 2 6
7 3 5 | 9 2 8 | 1 4 6 4 2 9 | 5 3 6 | 1 7 8
Mathimagics wrote:But we can still count the number of automorphic SudokuP grids, and do so very quickly (< 2 minutes). That turns out to be 78,257,944 (ignoring relabelling).
eleven wrote:Your first class has a mini-diagonal symmetry, move the columns right and the rows down in each stack/band (and renumber the 3-cycles). It is listed as number 10 in Red Ed's table.
But i can't find that in your example.
eleven wrote:Your second one is not listed in that table, and i doubt, that it defines an automorphism for sudoku grids.
eleven wrote:Instead i would expect Red Ed's classes 8,10,22,25,32,37,40,43,79,86,143,135,142,145 in your list, because they all don't use single row/column swaps (only those in all bands/stacks).
eleven wrote:Your second one is not listed in that table, and i doubt, that it defines an automorphism for sudoku grids.
Mathimagics wrote:But we can still count the number of automorphic SudokuP grids, and do so very quickly (< 2 minutes). That turns out to be 78,257,944 (ignoring relabelling).
Aha, that doesn't take into account multiple automorphisms, does it! For completeness I still need to identify the number of grids with 1 or more non-trivial automorphism. I think this has been done for standard Sudoku?
5,472,730,538 number of unique Sudoku solution grids
3,359,232 possible geometric permutations of solution grid
362,880 number of ways to renumber a grid
6,671,248,172,291,458,990,080 = 5,472,730,538 * 3,359,232 * 362,880
6,670,903,752,021,072,936,960 exact number of Sudoku solution grids
-----------------------------
344,420,270,386,053,120 = 949,129,933,824 x 362,880 (# of automorphisms)
? number of unique SudokuP solution grids
2,592 possible geometric permutations of solution grid
362,880 number of ways to renumber a grid
?? = ? * 2,592 * 362,880
201,105,135,151,764,480 exact number of SudokuP solution grids
-----------------------
28,398,242,718,720 = 78,257,944 * 362,880 (# of automorphisms)