SudokuP - Analysis

For fans of Killer Sudoku, Samurai Sudoku and other variants

Re: SudokuP - Analysis

Postby blue » Fri Feb 09, 2018 6:03 am

Mathimagics wrote:I am open to suggestion for alternate terminology, if we need to change so be it, but let's do it soon so we can get it out of the way and can still edit our posts! 8-)

I'm probably not the right one to comment, here, but for what you're doing, I would avoid the "essentially distinct" term, all together.
Off the top of my head, I might talk about partitioning the SudokuP grids into "S-classes", and wonder how many S-classes there are, for SudokuP.
blue
 
Posts: 1045
Joined: 11 March 2013

Re: SudokuP - Analysis

Postby Mathimagics » Fri Feb 09, 2018 7:28 am

Actually, you know, that's not a bad idea at all ...

S-classes, S-equivalence, S-difference ...

P-classes, P-equivalence, P-difference ...

I'll go along with that ...

blue wrote:I might talk about partitioning the SudokuP grids into "S-classes", and wonder how many S-classes there are, for SudokuP.


A very good question! I've just been handed a telegram, and the answer is, I believe, exactly 171,677,353

That's ~ 3.137% of 5,472,730,538. More details to follow ...
Last edited by Mathimagics on Wed Feb 14, 2018 1:33 pm, edited 1 time in total.
User avatar
Mathimagics
2017 Supporter
 
Posts: 1926
Joined: 27 May 2015
Location: Canberra

Re: SudokuP - Analysis

Postby Mathimagics » Fri Feb 09, 2018 8:49 am

Number of S-classes for std Sudoku (NSCS) and SudokuP (NSCP).

By automorphism group (|A| is automorphism count):
Code: Select all
  |A|        NSCS         NSCP
------------------------------
   1   5472170387    171512273
   2       548449       158125
   3         7336         4165
   4         2826         1671
   6         1257          892
   8           29           23
   9           42           24
  12           92           80
  18           85           68
  27            2            2
  36           15           13
  54           11           10
  72            2            2
 108            3            3
 162            1            1
 648            1            1
------------------------------
       5472730538    171677353


We see that S-automorphism cases have much higher probability of P-isomorphism (30%) than the general population (3%), yet S-automorphisms don't guarantee P-isomorphisms (eg, case |A| = 54).

Here is a table of counts by (gsf) band:
Hidden Text: Show
Code: Select all
   Band             NSCS        NSCP
 -----------------------------------
   001           1007170      355168
   002          25502082     4309260
   003          16538087     1137589
   004           8417906      571240
   005          48737791     2266642
   006          96229042     3080155
   007          15765443      279125
   008           5306280      102563
   009           8136013      664852
   010          47174193     1623405
   011          46788396     1384456
   012          46177270      863561
   013          15340394      279409
   014          45397270      767436
   015          45600758      885081
   016           1631576       19710
   017          15093541      269114
   018          45101600     3453925
   019          44832423     2472535
   020          88782526     2795160
   021          44036568     3291519
   022          85627559     2157797
   023          42711122     1449040
   024          85102373     1964485
   025          41847039      823424
   026          41335391      740455
   027           4455504      205200
   028          41102914     1293651
   029           4591391       92523
   030           4664261      156215
   031          13606209      252123
   032          40697707      916680
   033          80468663     3816637
   034          79175610     1772057
   035          77979783     3778806
   036          38536298      898833
   037          76146967     1814020
   038          74505665     1643191
   039          74154564     2512096
   040          72171447     1561942
   041          36053455     1263991
   042          70552290     1952744
   043          69437575     1967292
   044          67978951     2059818
   045          33904021     1397305
   046          66337407     2046269
   047          65880161     2826619
   048          64996381     3029171
   049          63898062     2796678
   050          62192220     1077584
   051          61691475     1431958
   052          60192385     1074562
   053          29966384      715380
   054          29734495      870038
   055          58731513     1634689
   056          57263818     1698901
   057          57033275     2554237
   058          55394556     1664289
   059          55022930     2158564
   060          54018514     2087154
   061          52964870      994316
   062          52242492     2017678
   063          51245000      980404
   064          50540742     1012477
   065          49644127     1005415
   066          49190978     1552709
   067          24077300      968815
   068          47978806     1502940
   069          47059527     1260920
   070          46231581     1210974
   071          22715795      621932
   072          44778204     1303763
   073          44053469     1192356
   074          43401907     1201460
   075          21398806      582194
   076          42061440      884457
   077          41316125      825608
   078          40571245      936432
   079          40282447     1199160
   080          39233218     1150017
   081          38522319     1075134
   082          37881913     1107320
   083          37460193     1358725
   084          18460204      646787
   085          36127803      828468
   086          35584769      831371
   087          34821531      839033
   088          34334716      985044
   089          33769162     1153695
   090          33174401     1520794
   091          32520037     1100151
   092          31945541      963567
   093          31221072      838841
   094          30579410      752365
   095          29977732      720358
   096          29390061      639750
   097          14518368      363781
   098          14372444      392678
   099          28268021      563182
   100          27849953      801512
   101          13768854      485248
   102          26929453      656310
   103          26382806      493352
   104           4359314      109819
   105          25997296      803704
   106          25467197      699571
   107          24888528      573163
   108          24423300      809984
   109          23988326      652770
   110          23541927      747909
   111          23070530      625941
   112          22609142      719138
   113          22100458      540219
   114          10879514      266446
   115          21378062      497651
   116          20985174      601431
   117          20674972      559868
   118          20107116      403264
   119          19854606      706627
   120           9732970      244048
   121          19084488      361067
   122           9491325      298447
   123          18532281      450259
   124           9142485      313026
   125          18075269      580134
   126          17675306      438257
   127          17545752      808281
   128          16990098      536960
   129           8369473      256889
   130          16406705      358268
   131          16189996      593524
   132          15791769      498896
   133           2613345      101836
   134          15362664      381910
   135          15272476      803537
   136          14918036      731187
   137           7254450      241614
   138          14383075      586267
   139           7011714      169886
   140          13738161      372897
   141          13445152      370081
   142           6593805      221747
   143          12918117      306972
   144           6403269      272847
   145          12568136      357464
   146          12354720      547880
   147          12036469      423372
   148           5931073      221288
   149           5949060      246897
   150          11577852      369636
   151          11435633      539275
   152          11155974      548145
   153          10671486      196791
   154          10525735      260642
   155          10188634      186554
   156          10059617      259085
   157           9805813      262666
   158           9629320      387614
   159           9490222      498171
   160           9280124      507336
   161           8844112      205905
   162           8628099      202902
   163           8429593      191959
   164           8227144      208522
   165           7998287      154643
   166           7813413      162732
   167           3839149       74786
   168           7548052      158877
   169           7349287      148404
   170           7146807      137500
   171           6993422      186832
   172           6828801      184316
   173           6674911      173777
   174           6476248      173877
   175           3166465       63137
   176           6205963      116384
   177           6040631      123552
   178           5882934      114042
   179           5812748      144824
   180           5615082      143222
   181           5461387      126382
   182           5367414      163401
   183           5222068      167116
   184           5072949      131699
   185           4918277      119414
   186           4778878      120025
   187           4641003      153180
   188           4539624      130520
   189           4407284      131887
   190           2186822      100655
   191           4220821      118873
   192           4158097      156266
   193           4070158      166447
   194           3857103       95121
   195           3785628      120448
   196           3693474      128897
   197           3555681       95464
   198           3453089       92086
   199           3345667       85648
   200           3252227       93190
   201           3165254       82485
   202           3064062       89715
   203           2966309       83041
   204           2932890      110068
   205           2841380      111224
   206           2701985       65304
   207           2628788       73542
   208           2532198       76659
   209           2443960       54892
   210           1243959       44047
   211           2317171       51297
   212           2357854       83360
   213           1137589       44544
   214           1083228       30745
   215           2183311       88131
   216           2244753      136118
   217           2143677      130822
   218           2100798      150217
   219           1007465       50160
   220           1970315      101543
   221           1841722       75657
   222           1873099      134720
   223           1772301       88251
   224            347777       72199
   225           1968442      368865
   226           1677704      100303
   227           1521001       51042
   228           1498734       51848
   229           1515366       92259
   230           1457098       83798
   231           1331185       43393
   232           1279569       41863
   233           1262013       41191
   234           1218744       40383
   235            386642       12945
   236           1182963       46348
   237            570172       24320
   238           1111083       45279
   239           1076551       43474
   240            167032        6609
   241            533940       20528
   242           1048083       58216
   243            974591       36457
   244            967788       57826
   245            455310       18663
   246            915249       49238
   247            500537       58731
   248            783336       18921
   249            822496       33083
   250-259       4118353      251905
   260-269       4942966      130999
   270-279       2374942       66598
   280-289       1443458       53567
   290-299       1584461       60741
   300-416       2097068       93333
  ----------------------------------
              5472730538   171677353
User avatar
Mathimagics
2017 Supporter
 
Posts: 1926
Joined: 27 May 2015
Location: Canberra

Re: SudokuP - Analysis

Postby Serg » Fri Feb 09, 2018 9:51 am

Hi, blue
blue wrote:
Serg wrote:Definition
SudokuP Validity Preserving Group or PVP Group is group of transformations preserving validity of any valid SudokuP puzzle or solution grid. This group is generated by following set of transformations and is subgroup of VPT Group.

1. Transposing.
2. Permutations of 3 bands.
3. Permutations of 3 stacks.
4. The same permutations of rows in every band.
5. The same permutations of columns in every stack.

Totally we have 2 x 6^4 = 2592 isomorphic transformations.

I argued earlier that this isn't the full "PVP" group.
I won't labor the point, but it's the intersection of the "full group" with the Sudoku VPT group.

I think you mean, that there are extra transformations preserving validity of some SudokuP puzzles or solution grids (for example, F-transformation). Those transformations don't participate PVP Group, so this group isn't full. But F-transformation isn't universal, i.e. it preserves validity of some SudokuP solution grids, but doesn't preserve validity of others. I wrote in my definition "PVP Group is group of transformations preserving validity of any valid SudokuP puzzle or solution grid", therefore F-transformation cannot participate this group. You can define another group (or set) of transformations including F-transformation, but that definition will define another kind of equivalence. When we say "there are 214,038,113 P-different SudokuP solutions grids" we mean that neither solution grid among those 214,038,113 SudokuP grids can be transformed to another by some transformation from PVP Group. One can define another kind of equivalency and get another number of X-equivalent SudokuP grids. But it doesn't imply that my definition of PVP Group is wrong.

I remember similar discussion years ago - should we treat "twin" valid sudoku puzzles, having unhitted UA sets among their clues and being transformed to each other by UA sets permutations, as different puzzles. Such "twins" have the same solution paths, so they are equivalent in wide sense. But when we say "essentially different" sudoku puzzles, we mean that neither of those puzzles can be transformed to another puzzle by one of 3,359,232 isomorphic transformations. This is question of definitions.

Serg
Serg
2018 Supporter
 
Posts: 890
Joined: 01 June 2010
Location: Russia

Re: SudokuP - Analysis

Postby blue » Fri Feb 09, 2018 11:39 am

Hi Serg,

I think you mean, that there are extra transformations preserving validity of some SudokuP puzzles or solution grids (for example, F-transformation). Those transformations don't participate PVP Group, so this group isn't full. But F-transformation isn't universal, i.e. it preserves validity of some SudokuP solution grids, but doesn't preserve validity of others.

There's an argument buried in this (long) post, that F is universal (for SudokuP grids). It went like this ...

blue wrote:Earlier, I wrote, of F, that:
It maps rows to boxes, boxes to rows, columns to box positions, and box positions to columns.

From that, we have that:
  • F maps grids satisfying the "row property", to grids satisfying the "box property"
  • F maps grids satisfying the "columns property", to grids satisfying the "position property"
  • F maps grids satisfying the "box property", to grids satisfying the "row property"
  • F maps grids satisfying the "position property", to grids satisfying the "column property"
It follows that F maps grids satisfying all 4 properties -- SudokuP grids -- to grids satisfying all 4 properties.
For Sudoku grids, though ... that are only required to satisfy the "row, column and box" properties ... it maps them to grids satisfying "row, position, and box" properties ... with no guarantee that the "column" property is satisfied, and so no guarantee that the result is also a Sudoku grid.

The sentence in blue, isn't part of the argument.
This is silly, but looking back at it, I meant to say "box, position, and row" properties, rather than "row, position, and box" properties ... to better highlight the connection with "what maps to what", under F.

P.S. I remember Mladen's "twins".
blue
 
Posts: 1045
Joined: 11 March 2013

Re: SudokuP - Analysis

Postby dobrichev » Fri Feb 09, 2018 2:10 pm

blue wrote:P.S. I remember Mladen's "twins".

Hi Blue,

Your F-transformation is very interesting by itself, but counting it as a universal sudokuP transformation to me is mater of convention.
A stronger than "twins" example: since we are working on full grids, you proved once that modulo swapping the values within a unavoidable set there is only one "essentially different sudokuU" grid, i.e. transformations path from any particular grid to the MC grid always exists.

edit: meant swapping the values within a minimal ua.
Last edited by dobrichev on Fri Feb 09, 2018 10:40 pm, edited 1 time in total.
dobrichev
2016 Supporter
 
Posts: 1863
Joined: 24 May 2010

Re: SudokuP - Analysis

Postby Mathimagics » Fri Feb 09, 2018 3:00 pm

I've just had the auditors in to check my results. They came up with this account:

  • NSP = 555,139,980,000
  • NDP = 554,191,840,696
  • NSP-NDP = 948,139,304

NSP is the total # of SudokuP isomorphisms returned by my counting procedure.

NDP is the exact number of different SudokuP grids (up to relabelling).

And 948,139,304 is the exact number of automorphic Sudoku grids (up to relabelling).

The data which produced the first figure is given here. For each grid with 1 or more SudokuP isomorphisms we add up the total number of such isomorphisms (as adjudged by the iso-checker) and multiply that by 2592 for the full count:
Hidden Text: Show
Code: Select all
   NI             Count
  ---------------------
    1         143617893
    2          21927558
    3           3286903
    4           1305594
    5            227818
    6            847506
    7            183130
    8             12353
    9              4359
   10               379
   11              1218
   12            183203
   13             43996
   14              2807
   15              1282
   16                44
   17               352
   19                47
   21                18
   23                31
   25                 2
   27                 8
   31                 1
   33                 1
   36             25207
   37              4437
   38               299
   39               682
   40                25
   41               124
   42                20
   43                23
   45                13
   46                 1
   47                11
   48                 2
   51                 3
   53                 1
   71                 1
   73                 1
   --------------------
   T  =     171,677,353   (# with 1 or more SudukuP-iso's)
   TI =     214,174,375   (sum of NI * Count)
   NP = 555,139,980,000   (TI * 2592, actual number of iso's)
User avatar
Mathimagics
2017 Supporter
 
Posts: 1926
Joined: 27 May 2015
Location: Canberra

Re: SudokuP - Analysis

Postby Serg » Fri Feb 09, 2018 5:48 pm

Hi, blue!
You are right, F-transformation is universal, i.e. it transforms any valid SudokuP puzzle/solution grid to another valid SudokuP puzzle/solution grid. Sorry, I have not carefully read your posts.

Definition (corrected)
SudokuP Validity Preserving Group or PVP Group is group of transformations preserving validity of any valid SudokuP puzzle or solution grid. This group is generated by following set of transformations.

1. Transposing.
2. Permutations of 3 bands.
3. Permutations of 3 stacks.
4. The same permutations of rows in every band.
5. The same permutations of columns in every stack.
6. F-transformation (permutations of minirows in each band).
7. G-transformation (permutations of minicolumns in each stack).

Totally we have 8 x 6^4 = 10368 isomorphic transformations.

Therefore, number of p-different SudokuP solution grids should be recalculated. It seems true number of p-different SudokuP solution grids should be around 214,038,113/4 = 53,509,528 (approx.)

Can we be sure that all possible transformations preserving validity of any valid SudokuP solution grid are accounted for?

Good news is that number of coset representatives is 4 times less now - 324 transformations instead of 1296 transformations.

Separate set of transformations potentially preserving validity of SudokuP solution grids should be defined (instead of VPT Group), and it looks like that set of such transformations won't form a group ...

Serg

[Edited. I got excited, stating, that known results in Sudoku Mathematics are in question. Really, F-transformation effects essentially different SudokuP solution grids enumeration only. I'm sorry.]
[Edited2. PVP Group is redefined and added some considerations.]
Serg
2018 Supporter
 
Posts: 890
Joined: 01 June 2010
Location: Russia

Re: SudokuP - Analysis

Postby eleven » Fri Feb 09, 2018 10:17 pm

Serg wrote:I remember similar discussion years ago - should we treat "twin" valid sudoku puzzles, having unhitted UA sets among their clues and being transformed to each other by UA sets permutations, as different puzzles. Such "twins" have the same solution paths, so they are equivalent in wide sense.

This is not quite true. If you take a puzzle, and swap the digits of an unavoidable set in the solution, thus swapping at least one given in the puzzle, then the new puzzle generally will not have a unique solution too. The new grid has a very different set of puzzles at all.
But i remember from solving digit symmetric (automorph) puzzles using symmetry techniques, that you can use them too, if a puzzle with the givens of an unavoidable set swapped would be digit symmetric.
The solution path is only the same, if all digits of an unavoidable set are givens in the puzzle.
eleven
 
Posts: 3153
Joined: 10 February 2008

Re: SudokuP - Analysis

Postby Serg » Fri Feb 09, 2018 10:41 pm

Hi, eleven!
eleven wrote:
Serg wrote:I remember similar discussion years ago - should we treat "twin" valid sudoku puzzles, having unhitted UA sets among their clues and being transformed to each other by UA sets permutations, as different puzzles. Such "twins" have the same solution paths, so they are equivalent in wide sense.

This is not quite true. If you take a puzzle, and swap the digits of an unavoidable set in the solution, thus swapping at least one given in the puzzle, then the new puzzle generally will not have a unique solution too. The new grid has a very different set of puzzles at all.

You are right. But I meant not swapping the digits of an unavoidable set in the solution, I meant swapping the givens (clues) only.

This is an example.
Code: Select all
2 . 3 . . . 4 . 6       2 . 3 . . . . . .     puzzle 1
. 1 . . . . . 2 .       . . . . . . . . .
5 . 7 . . . 8 . 3       . . . . . . . . .
. . . 2 . 3 . . .       . . . . . . . . .
. . . . 1 . . . .       . . . . . . . . .
. . . 4 . 5 . . .       . . . . . . . . .
3 . 2 . . . 6 . 8       3 . 2 . . . . . .
. 6 . . . . . 4 .       . . . . . . . . .
8 . 1 . . . 5 . 9       . . . . . . . . .

3 . 2 . . . 4 . 6       3 . 2 . . . . . .     puzzle 2
. 1 . . . . . 2 .       . . . . . . . . .
5 . 7 . . . 8 . 3       . . . . . . . . .
. . . 2 . 3 . . .       . . . . . . . . .
. . . . 1 . . . .       . . . . . . . . .
. . . 4 . 5 . . .       . . . . . . . . .
2 . 3 . . . 6 . 8       2 . 3 . . . . . .
. 6 . . . . . 4 .       . . . . . . . . .
8 . 1 . . . 5 . 9       . . . . . . . . .

Puzzle 1 and puzzle 2 are twins, because puzzle 1 produces puzzle 2 by U4 unavoidable set permutation of clues (and vice versa). Both puzzles have the same solution paths.

Serg
Serg
2018 Supporter
 
Posts: 890
Joined: 01 June 2010
Location: Russia

Re: SudokuP - Analysis

Postby eleven » Fri Feb 09, 2018 11:26 pm

Yes, here all 4 UA4 digits are givens. Thus the puzzles are "solver equivalent". But not the grids (solutions).
eleven
 
Posts: 3153
Joined: 10 February 2008

Re: SudokuP - Analysis

Postby Mathimagics » Sat Feb 10, 2018 4:54 am

serg wrote:Therefore, number of p-different SudokuP solution grids should be recalculated.


Having established universality of F, G, then that makes sense. I will reconfigure the PVP group and make a new pass over the data ...

Serg wrote:Can we be sure that all possible transformations preserving validity of any valid SudokuP solution grid are accounted for?

That seems highly probable, unless blue has another trick up his sleeve?

Serg wrote:Good news is that number of coset representatives is 4 times less now - 324 transformations instead of 1296 transformations.

I am not sure how this helps. We only used the 1296-transformation set in the context of counting P-isotopes among the 5.47 billion ED-Sudoku representatives. That result is now known, and using a different PVP group has no effect on this result, it seems to me.

Put another way, the splitting of S-group into 1296 x 2592 makes sense to me, since the 2592 P-preserving transformations were a subset of the S-preserving transformations. With P-preservers extended to include F and G, this subset relationship no longer holds true, so we can't do the same splitting operations.

Unless, of course, I have made (yet another) group-theoretical blunder? :?
User avatar
Mathimagics
2017 Supporter
 
Posts: 1926
Joined: 27 May 2015
Location: Canberra

Re: SudokuP - Analysis

Postby Serg » Sat Feb 10, 2018 9:06 am

Hi, Mathimagics!
Mathimagics wrote:
serg wrote:Therefore, number of p-different SudokuP solution grids should be recalculated.


Having established universality of F, G, then that makes sense. I will reconfigure the PVP group and make a new pass over the data ...

I am waiting for new results.
Mathimagics wrote:
Serg wrote:Good news is that number of coset representatives is 4 times less now - 324 transformations instead of 1296 transformations.

I am not sure how this helps. We only used the 1296-transformation set in the context of counting P-isotopes among the 5.47 billion ED-Sudoku representatives. That result is now known, and using a different PVP group has no effect on this result, it seems to me.

Put another way, the splitting of S-group into 1296 x 2592 makes sense to me, since the 2592 P-preserving transformations were a subset of the S-preserving transformations. With P-preservers extended to include F and G, this subset relationship no longer holds true, so we can't do the same splitting operations.

You are right. We cannot consider targeted set of SudokuP solution grids as subset of 5.47 billion ed sudoku solution grids. Even the name of those searched SudokuP solution grids isn't known. What are we searching for? Not essentially different SudokuP solution grids, because VPT Group doesn't contain F/G-transformations. Here is my trial to define them.

Definition
Two SudokuP puzzles/grids/patterns are naturally the same if there is VPT or PVP transformation transforming one puzzle/grid/patterns to another. Otherwise these puzzles/grids/patterns are naturally different or nd-different.

Not elegant definition, of course ...

blue's discovery destroys common concepts ...

Mathimagics wrote:Unless, of course, I have made (yet another) group-theoretical blunder? :?

I don't see any errors (but I am not Group Theory expert myself too). It seems to me your English is not native - your vocabulary is too rich (I was forced to search "blunder" in Google translator :P).

Serg
Serg
2018 Supporter
 
Posts: 890
Joined: 01 June 2010
Location: Russia

Re: SudokuP - Analysis

Postby Mathimagics » Sat Feb 10, 2018 6:08 pm

It seems true number of p-different SudokuP solution grids should be around 214,038,113/4 = 53,509,528 (approx.)


Very close! The actual number is 53,666,689

Burnside's Lemma method, details for each non-empty class:

Hidden Text: Show
Code: Select all
Class # Invts   Members   Class Invariants 
------------------------------------------
  1                        554,191,840,696
  2   1545472         8         12,363,776
  3     82204        16          1,315,264
  4   3186448         8         25,491,584
  5      8914        32            285,248
  6     22852        16            365,632
  7    962088        81         77,929,128
  8     17052        72          1,227,744
  9       126       288             36,288
 10        12       288              3,456
 11  13511908        36        486,428,688
 12      3280       144            472,320
 13       592       144             85,248
 17       780       648            505,440
 18       580       324            187,920
 19  26410752        18        475,393,536
 20      6912        72            497,664
 21      5832        72            419,904
 34  78307288        12        939,687,456
 35     11344        48            54,4512
 36      8296        24            199,104
 37       904        96             86,784
 38     27028        48          1,297,344
 39       766        96             73,536
 40   1834384       108        198,113,472
 41      2632       216            568,512
 42      1222       432            527,904
 43         4       864              3,456
 46      2316        72            166,752
 47        48       144              6,912
 48       264       144             38,016
 49        30       288              8,640
 50        46      1296             59,616
------------------------------------------
    125962376      6155    556,416,231,552
Sum(NI * Members)/10368         53,666,689


Serg wrote:I was forced to search "blunder" in Google translator

Howls of derisive laughter! I am in fact Australian, of mostly Irish/Scotttish extraction. 8-)
User avatar
Mathimagics
2017 Supporter
 
Posts: 1926
Joined: 27 May 2015
Location: Canberra

Re: SudokuP - Analysis

Postby tarek » Sat Feb 10, 2018 8:19 pm

Serg wrote: It seems to me your English is not native - your vocabulary is too rich (I was forced to search "blunder" in Google translator :P).


Apologies for interrupting your interesting discussion. I couldn't ignore though Serg's post of the day :lol:

tarek
User avatar
tarek
 
Posts: 3762
Joined: 05 January 2006

PreviousNext

Return to Sudoku variants