I played a bit around with my added NC+ functionality and found a few things:
1.
blue's method with the N types of minirows gives no NC+ solutions for N=2, 3 and 4. Here is a solution for N=5 which additional is SudokuW (and SudokuP)
- Code: Select all
+----------------+----------------+----------------+----------------+----------------+
| 1 3 5 2 4 | 7 10 8 6 9 | 15 12 14 11 13 | 16 18 20 17 19 | 22 25 23 21 24 |
| 8 10 7 9 6 | 11 14 12 15 13 | 18 20 17 19 16 | 21 24 22 25 23 | 1 4 2 5 3 |
| 11 13 15 12 14 | 20 18 16 19 17 | 21 24 22 25 23 | 1 4 2 5 3 | 10 8 6 9 7 |
| 20 17 19 16 18 | 24 21 23 25 22 | 1 4 2 5 3 | 10 8 6 9 7 | 15 13 11 14 12 |
| 24 21 23 25 22 | 4 1 3 5 2 | 6 8 10 7 9 | 14 11 13 15 12 | 18 20 17 19 16 |
+----------------+----------------+----------------+----------------+----------------+
| 4 1 3 5 2 | 8 6 9 7 10 | 14 11 13 15 12 | 18 20 17 19 16 | 21 24 22 25 23 |
| 7 9 6 8 10 | 12 15 13 11 14 | 16 18 20 17 19 | 22 25 23 21 24 | 3 1 4 2 5 |
| 15 12 14 11 13 | 17 20 18 16 19 | 24 22 25 23 21 | 4 2 5 3 1 | 7 10 8 6 9 |
| 17 19 16 18 20 | 22 24 21 23 25 | 4 2 5 3 1 | 7 10 8 6 9 | 14 12 15 13 11 |
| 22 24 21 23 25 | 2 4 1 3 5 | 8 10 7 9 6 | 13 15 12 14 11 | 20 17 19 16 18 |
+----------------+----------------+----------------+----------------+----------------+
| 2 4 1 3 5 | 10 8 6 9 7 | 13 15 12 14 11 | 20 17 19 16 18 | 24 22 25 23 21 |
| 10 7 9 6 8 | 15 13 11 14 12 | 20 17 19 16 18 | 24 22 25 23 21 | 4 2 5 3 1 |
| 12 14 11 13 15 | 18 16 19 17 20 | 22 25 23 21 24 | 3 1 4 2 5 | 9 7 10 8 6 |
| 19 16 18 20 17 | 21 23 25 22 24 | 2 5 3 1 4 | 6 9 7 10 8 | 13 11 14 12 15 |
| 21 23 25 22 24 | 5 2 4 1 3 | 7 9 6 8 10 | 12 14 11 13 15 | 17 19 16 18 20 |
+----------------+----------------+----------------+----------------+----------------+
| 5 2 4 1 3 | 9 7 10 8 6 | 12 14 11 13 15 | 17 19 16 18 20 | 23 21 24 22 25 |
| 9 6 8 10 7 | 14 12 15 13 11 | 17 19 16 18 20 | 23 21 24 22 25 | 2 5 3 1 4 |
| 14 11 13 15 12 | 19 17 20 18 16 | 23 21 24 22 25 | 2 5 3 1 4 | 6 9 7 10 8 |
| 18 20 17 19 16 | 25 22 24 21 23 | 3 1 4 2 5 | 9 7 10 8 6 | 11 14 12 15 13 |
| 23 25 22 24 21 | 3 5 2 4 1 | 9 6 8 10 7 | 11 13 15 12 14 | 19 16 18 20 17 |
+----------------+----------------+----------------+----------------+----------------+
| 3 5 2 4 1 | 6 9 7 10 8 | 11 13 15 12 14 | 19 16 18 20 17 | 25 23 21 24 22 |
| 6 8 10 7 9 | 13 11 14 12 15 | 19 16 18 20 17 | 25 23 21 24 22 | 5 3 1 4 2 |
| 13 15 12 14 11 | 16 19 17 20 18 | 25 23 21 24 22 | 5 3 1 4 2 | 8 6 9 7 10 |
| 16 18 20 17 19 | 23 25 22 24 21 | 5 3 1 4 2 | 8 6 9 7 10 | 12 15 13 11 14 |
| 25 22 24 21 23 | 1 3 5 2 4 | 10 7 9 6 8 | 15 12 14 11 13 | 16 18 20 17 19 |
+----------------+----------------+----------------+----------------+----------------+
There is no solution of this type which is additional SudokuX.
2.
blue's method gives solutions which have P/W/X/NC+ property from N=6 on: Here an example:
- Code: Select all
+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+
| 5 3 6 1 4 2 | 9 11 7 10 12 8 | 13 15 17 14 16 18 | 22 20 24 21 23 19 | 30 26 29 27 25 28 | 34 31 33 35 32 36 |
| 11 7 9 12 10 8 | 15 13 18 16 14 17 | 21 23 19 22 24 20 | 27 25 28 30 26 29 | 34 31 35 32 36 33 | 1 4 2 6 3 5 |
| 15 13 18 16 14 17 | 23 21 24 20 22 19 | 28 25 27 29 26 30 | 32 34 31 35 33 36 | 6 3 1 4 2 5 | 8 11 9 12 10 7 |
| 23 20 24 22 19 21 | 25 28 26 29 27 30 | 32 34 31 36 33 35 | 4 6 1 3 5 2 | 12 9 11 8 10 7 | 15 17 13 16 18 14 |
| 25 27 30 28 26 29 | 34 32 35 31 33 36 | 4 1 6 3 5 2 | 8 11 9 12 7 10 | 18 16 13 15 17 14 | 19 23 21 24 20 22 |
| 34 36 33 31 35 32 | 1 4 6 3 5 2 | 8 11 9 12 7 10 | 15 13 16 18 14 17 | 21 19 23 20 24 22 | 28 25 27 30 26 29 |
+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+
| 1 5 2 4 6 3 | 11 8 12 9 7 10 | 15 13 16 18 14 17 | 21 19 23 20 24 22 | 25 27 30 28 26 29 | 31 36 34 32 35 33 |
| 9 11 8 10 12 7 | 13 15 17 14 18 16 | 24 22 20 23 21 19 | 29 27 30 26 28 25 | 35 32 34 31 33 36 | 3 5 1 4 2 6 |
| 17 14 16 13 18 15 | 20 22 19 23 21 24 | 26 29 25 28 30 27 | 33 31 34 36 32 35 | 2 5 3 1 6 4 | 9 12 8 10 7 11 |
| 20 24 22 19 21 23 | 29 26 28 25 30 27 | 34 31 33 35 32 36 | 3 1 5 2 6 4 | 7 10 8 12 9 11 | 16 18 14 17 15 13 |
| 29 26 28 30 27 25 | 31 34 36 33 35 32 | 1 3 5 2 4 6 | 12 8 10 7 11 9 | 16 18 14 17 15 13 | 22 20 24 21 23 19 |
| 31 33 36 34 32 35 | 3 1 5 2 4 6 | 12 8 10 7 11 9 | 17 14 18 16 13 15 | 22 24 20 23 21 19 | 25 27 29 26 28 30 |
+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+
| 3 6 4 2 5 1 | 8 12 10 7 11 9 | 17 14 18 16 13 15 | 24 22 20 23 19 21 | 26 28 25 29 27 30 | 32 34 36 31 33 35 |
| 8 10 12 9 7 11 | 17 14 16 13 15 18 | 22 20 24 21 19 23 | 26 29 25 28 30 27 | 31 33 36 34 32 35 | 2 6 3 5 1 4 |
| 13 16 14 17 15 18 | 22 24 21 19 23 20 | 30 27 29 25 28 26 | 31 35 32 34 36 33 | 3 1 5 2 4 6 | 12 9 7 11 8 10 |
| 19 21 23 20 24 22 | 30 27 29 26 28 25 | 36 33 35 31 34 32 | 1 3 6 4 2 5 | 11 8 10 7 12 9 | 17 13 15 18 14 16 |
| 30 28 25 27 29 26 | 33 36 32 35 31 34 | 3 6 1 4 2 5 | 7 10 8 11 9 12 | 14 17 15 13 18 16 | 20 22 19 23 21 24 |
| 33 35 32 36 34 31 | 6 3 1 4 2 5 | 7 10 8 11 9 12 | 14 17 13 15 18 16 | 23 21 19 22 20 24 | 27 30 28 25 29 26 |
+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+
| 6 2 5 3 1 4 | 10 7 9 12 8 11 | 14 17 13 15 18 16 | 23 21 19 22 20 24 | 28 30 27 25 29 26 | 36 32 35 33 31 34 |
| 10 8 11 7 9 12 | 14 17 15 18 16 13 | 23 19 21 24 20 22 | 28 30 27 25 29 26 | 33 36 32 35 31 34 | 4 1 6 3 5 2 |
| 14 17 15 18 13 16 | 19 23 20 22 24 21 | 27 30 28 26 29 25 | 35 33 36 32 34 31 | 1 4 6 3 5 2 | 10 7 11 8 12 9 |
| 22 19 21 23 20 24 | 27 30 25 28 26 29 | 31 35 32 34 36 33 | 2 5 3 1 4 6 | 8 12 9 11 7 10 | 13 15 17 14 16 18 |
| 26 29 27 25 28 30 | 36 33 31 34 32 35 | 5 2 4 1 6 3 | 9 12 7 10 8 11 | 13 15 18 16 14 17 | 24 21 23 19 22 20 |
| 36 32 35 33 31 34 | 2 5 3 1 6 4 | 9 12 7 10 8 11 | 16 18 15 13 17 14 | 19 23 21 24 22 20 | 30 28 26 29 27 25 |
+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+
| 2 4 1 5 3 6 | 12 9 11 8 10 7 | 16 18 15 13 17 14 | 19 23 21 24 22 20 | 27 29 26 30 28 25 | 35 33 31 34 36 32 |
| 12 9 7 11 8 10 | 18 16 13 15 17 14 | 19 21 23 20 22 24 | 30 26 29 27 25 28 | 36 34 31 33 35 32 | 5 2 4 1 6 3 |
| 18 15 17 14 16 13 | 21 19 22 24 20 23 | 29 26 30 27 25 28 | 34 36 33 31 35 32 | 5 2 4 6 1 3 | 7 10 12 9 11 8 |
| 21 23 20 24 22 19 | 26 29 27 30 25 28 | 33 36 34 32 35 31 | 5 2 4 6 1 3 | 10 7 12 9 11 8 | 14 16 18 15 13 17 |
| 27 30 26 29 25 28 | 35 31 34 32 36 33 | 2 5 3 6 1 4 | 11 9 12 8 10 7 | 15 13 17 14 16 18 | 21 24 20 22 19 23 |
| 32 34 31 35 33 36 | 4 6 2 5 3 1 | 10 7 11 9 12 8 | 18 16 14 17 15 13 | 24 20 22 19 23 21 | 29 26 30 28 25 27 |
+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+
| 4 1 3 6 2 5 | 7 10 8 11 9 12 | 18 16 14 17 15 13 | 20 24 22 19 21 23 | 29 25 28 26 30 27 | 33 35 32 36 34 31 |
| 7 12 10 8 11 9 | 16 18 14 17 13 15 | 20 24 22 19 23 21 | 25 28 26 29 27 30 | 32 35 33 36 34 31 | 6 3 5 2 4 1 |
| 16 18 13 15 17 14 | 24 20 23 21 19 22 | 25 28 26 30 27 29 | 36 32 35 33 31 34 | 4 6 2 5 3 1 | 11 8 10 7 9 12 |
| 24 22 19 21 23 20 | 28 25 30 27 29 26 | 35 32 36 33 31 34 | 6 4 2 5 3 1 | 9 11 7 10 8 12 | 18 14 16 13 17 15 |
| 28 25 29 26 30 27 | 32 35 33 36 34 31 | 6 4 2 5 3 1 | 10 7 11 9 12 8 | 17 14 16 18 13 15 | 23 19 22 20 24 21 |
| 35 31 34 32 36 33 | 5 2 4 6 1 3 | 11 9 12 8 10 7 | 13 15 17 14 16 18 | 20 22 24 21 19 23 | 26 29 25 27 30 28 |
+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+
3. For N= 3 there does not exist any NC+ puzzle which also is SudokuW. For N=4 I cannot answer this question since the SAT-solver hangs.
4. For N=3 the number of necessary givens for a NC+ seems to be quite low. Here is an example with 6 givens
......................2....7............................9.....4..............8.6.
5. For N=3 here is a Sudoku which is NC+, X and P which needs only 4 givens
.....................................................3...1.................7..4..