- Code: Select all
`698415372517283496324697815972534168431876259865129734289351647156742983743968521`

2-permutable sets: 20

4-permutable sets: 9

8-permutable sets: 6

16-permutable sets: 1

Total amount of 2-digit unavoidble sets: 60

675481329984372156312569478598146732423758961167923584736814295851297643249635817

2-permutable sets: 19

4-permutable sets: 13

8-permutable sets: 4

16-permutable sets: 0

Total amount of 2-digit unavoidble sets: 57

251398674463715298978462513197684352546123987382579461629837145714256839835941726

2-permutable sets: 21

4-permutable sets: 10

8-permutable sets: 5

16-permutable sets: 0

Total amount of 2-digit unavoidble sets: 56

842579136963124578571386249456291783128437965397865412615948327739612854284753691

2-permutable sets: 18

4-permutable sets: 16

8-permutable sets: 2

16-permutable sets: 0

Total amount of 2-digit unavoidble sets: 56

478592613612473859539618274751346982894725361326981745945837126183264597267159438

2-permutable sets: 19

4-permutable sets: 13

8-permutable sets: 4

16-permutable sets: 0

Total amount of 2-digit unavoidble sets: 57

536729841987514263124863759869132574713485692245697138498256317672341985351978426

2-permutable sets: 19

4-permutable sets: 14

8-permutable sets: 3

16-permutable sets: 0

Total amount of 2-digit unavoidble sets: 56

648923157195487236273165498827319564319546872564872319786251943431798625952634781

2-permutable sets: 25

4-permutable sets: 6

8-permutable sets: 5

16-permutable sets: 0

Total amount of 2-digit unavoidble sets: 52

279153648148976235653482197537649812891327564426815379362594781784261953915738426

2-permutable sets: 17

4-permutable sets: 14

8-permutable sets: 5

16-permutable sets: 0

Total amount of 2-digit unavoidble sets: 60

975321846468759321123864975891647532647532189532918764284175693716493258359286417

2-permutable sets: 24

4-permutable sets: 11

8-permutable sets: 1

16-permutable sets: 0

Total amount of 2-digit unavoidble sets: 49

614598372732641589598372641841736925359214867267985413475163298183429756926857134

2-permutable sets: 21

4-permutable sets: 12

8-permutable sets: 2

16-permutable sets: 1

Total amount of 2-digit unavoidble sets: 55

731698452958243617462175938579462183846351729213789546687524391325916874194837265

2-permutable sets: 22

4-permutable sets: 12

8-permutable sets: 1

16-permutable sets: 1

Total amount of 2-digit unavoidble sets: 53

439627185752198643618435279295784361187369452364251798523976814971843526846512937

2-permutable sets: 17

4-permutable sets: 16

8-permutable sets: 3

16-permutable sets: 0

Total amount of 2-digit unavoidble sets: 58

483725691196843527257691843729386415841952736365417982932564178578139264614278359

2-permutable sets: 22

4-permutable sets: 13

8-permutable sets: 1

16-permutable sets: 0

Total amount of 2-digit unavoidble sets: 51

451786329327945186896312745173528694564179238289634517915863472632497851748251963

2-permutable sets: 20

4-permutable sets: 9

8-permutable sets: 7

16-permutable sets: 0

Total amount of 2-digit unavoidble sets: 59

342798165517634982896512743764985231185326497239147856478253619651479328923861574

2-permutable sets: 20

4-permutable sets: 14

8-permutable sets: 2

16-permutable sets: 0

Total amount of 2-digit unavoidble sets: 54

To compare the 5 most fertile grids for 17s, found here:

- Code: Select all
`639241785284765193517983624123857946796432851458619237342178569861594372975326418`

2-permutable sets: 28

4-permutable sets: 8

8-permutable sets: 0

16-permutable sets: 0

Total amount of 2-digit unavoidble sets: 44

873692451649517328521348976132976845498125637765483192954761283386254719217839564

2-permutable sets: 24

4-permutable sets: 9

8-permutable sets: 2

16-permutable sets: 1

Total amount of 2-digit unavoidble sets: 52

438926751796451382251738469123687945647593218589214673362175894914862537875349126

2-permutable sets: 21

4-permutable sets: 11

8-permutable sets: 4

16-permutable sets: 0

Total amount of 2-digit unavoidble sets: 55

236195478487263159591487632123759864759648321648321795314972586872516943965834217

2-permutable sets: 31

4-permutable sets: 3

8-permutable sets: 1

16-permutable sets: 1

Total amount of 2-digit unavoidble sets: 44

481972365296534178537168942123697584658241793749385216314726859965813427872459631

2-permutable sets: 25

4-permutable sets: 9

8-permutable sets: 2

16-permutable sets: 0

Total amount of 2-digit unavoidble sets: 49

It's quite obvious that the average amount of 2-perms is much higher for the grids with many 17s. Also, the average amount of 2-digit unavoidables is lower.

My problem now is that my little program only takes solved grids and the big collections available (gfroyle's known 17s, Ruud's 50k...) are unsolved grids. Is there a program available that reads multiple grids and outputs the solutions to a file? I'm not that interested in writing a brute force solver myself...

RW