## Steve's Stumble II

Post puzzles for others to solve here.

### Re: Steve's Stumble II

daj95376 wrote:Skyscraper???

With the two towers and the (weak) box link in B1 ... ?
blue

Posts: 894
Joined: 11 March 2013

### Re: Steve's Stumble II

blue wrote:
daj95376 wrote:Skyscraper???

With the two towers and the (weak) box link in B1 ... ?

What I see is a Franken X-Wing w/2x remote fin cells:

Code: Select all
`(Franken X-Wing (4)c15\r7b1) = 4r1c5 ... (remote fin linkage)                                 ||                             = 4r5c5 ... (chain leading to second X-Wing w/remote fin cell)`

Chain leading to second X-Wing w/remote fin cell:

Code: Select all
`(4-9)r5c5 = (9-8)r5c6 = (8-4)r8c6 = (??? X-Wing (4)r18\c24)                                      ||                                  = 4r1c5 ... (remote fin linkage)`

Skyscrapers are Sashimi X-Wing ... not Franken X-Wing.

You could drop both fish patterns and reduce your logic to a network.

Code: Select all
`4r3c1 = 4r7c1 - 4r7c5 =  4   r1c5 ... (see below)                              ||                      = (4-9)r5c5 = (9-8)r5c6 = (8-4)r8c6 = 4r8c2 - 4r2c2                                                              ||                                                          = 4r8c4 - 4r1c4 = 4r1c5 ... (see below)(4-5)r1c5 = (5-6)r9c5 = 6r9c7 - (6=9)r8c7 - (9=4)r2c7 - 4r2c2`
daj95376
2014 Supporter

Posts: 2624
Joined: 15 May 2006

Hi Danny,
daj95376 wrote:What I see is a Franken X-Wing w/2x remote fin cells:

Code: Select all
`(Franken X-Wing (4)c15\r7b1) = 4r1c5 ... (remote fin linkage)                                 ||                             = 4r5c5 ... (chain leading to second X-Wing w/remote fin cell)`

Chain leading to second X-Wing w/remote fin cell:

Code: Select all
`(4-9)r5c5 = (9-8)r5c6 = (8-4)r8c6 = (??? X-Wing (4)r18\c24)                                      ||                                  = 4r1c5 ... (remote fin linkage)`

Right. Nothing wrong with that, or with your network diagram.
I was trying to avoid the (2x) "Kraken" feel that you get, showing things that way.
The AIC with pattern nodes, seemed more palatable.

daj95376 wrote:Skyscrapers are Sashimi X-Wing ... not Franken X-Wing.

When I want to think of them as fish, I only go as far as calling them finned X-wings.
If pressed, I would say they're "franken" or not (dealer's choice), depending on which tower candidate is designated as the fin.
I suppose they're Sashimi X-wings either way, although I've never been clear on the proper meaning of "Sashimi".

In your depiction above, both X-wings would be Sashimi ? (one Franken, one normal) ?
blue

Posts: 894
Joined: 11 March 2013

### Re:

blue wrote:In your depiction above, both X-wings would be Sashimi ? (one Franken, one normal) ?

Although your "fish" concept works, I had a problem because traditional fin cells were missing to make the fish patterns stable.

I saw your initial pattern as a Kraken Franken X-Wing. However, without the Kraken cells, the Franken X-Wing degenerates. What's left is a Kraken Column [c5] on <4>. (the following is a repeat of an earlier post of mine)

Code: Select all
`Kraken Cell:    (4-5)r1c5 = (5-6)r9c5 = 6r9c7 - (6=9)r8c7 - (9=4)r2c7 - 4r2c2Kraken Cell:    (4-9)r5c5 = (9-8)r5c6 =  (8-4)r8c6 = 4r8c2 - 4r2c2                 4   r5c5 - 4r1c5 = 4r1c4 - 4 r8c4 /Franken X-Wing:  4   r7c5 - 4r7c1 = 4r3c1 - 4r2c2`

Your second fish also degenerates because r1c5 can not be a Kraken cell when it's assumed that =4r5c5. I folded the logic into a secondary stream that merges with the first stream.
daj95376
2014 Supporter

Posts: 2624
Joined: 15 May 2006

daj95376 wrote:
blue wrote:In your depiction above, both X-wings would be Sashimi ? (one Franken, one normal) ?

Although your "fish" concept works, I had a problem because traditional fin cells were missing to make the fish patterns stable.

Body (not fin?) cells ?

daj95376 wrote:I saw your initial pattern as a Kraken Franken X-Wing. However, without the Kraken cells, the Franken X-Wing degenerates. What's left is a Kraken Column [c5] on <4>. (the following is a repeat of an earlier post of mine)

(...)

Your second fish also degenerates because r1c5 can not be a Kraken cell when it's assumed that =4r5c5. I folded the logic into a secondary stream that merges with the first stream.

I saw that ! I looked at that option too, before deciding on my first post.

Here's a nice diagram showing the (clearly degenerate) "fish".

Code: Select all
`+-------------------------------------+|                            2nd fish || 4r8c4 - 4r1c4                       ||   ||      ||                        ||   ||    4r1c5 - (remote linkage) -  ||   ||                                || 4r8c2 -                             ||   ||                                |+-------------------------------------+    ||  4r8c6 - 8r8c6 = (8-9)r5c6 = 9r5c5 - 4r5c5                                        ||                                   +------------------------------+                                   |    ||               1st fish |                                   |  4r7c5 - 4r7c1               |                                   |    ||      ||                |                                   |    ||    4r3c1 -             |                                   |    ||                        |                                   |  4r1c5 - (remote linkage) -  |                                   |                              |                                   +------------------------------+`

This is another network approach, using the same AI streams, but handling the 4's differently:

Code: Select all
`(4=9)r2c7 - (9=6)r8c7 - 6r9c7 = (6-5)r9c5 = (5-4)r1c5 = = 4r1c4 -----------------------------------------         \                                        \          4r45c4                                   \            ||                                      \          4r5c5 - 9r5c4 = (9-8)r5c6 = 8r8c6          \            ||                              \         \          4r45c6 --------------------------- 4r8c6 = 4r8c4 = 4r8c2=> -4r2c2`

And the PMs for reference:

Code: Select all
`+--------------+------------------+-------------+| 3   9    8   | 45     45   6    | 1    2   7  || 7   24   26  | 13     8    139  | 49   36  5  || 46  1    5   | 237    29   2379 | 489  36  89 |+--------------+------------------+-------------+| 9   8    7   | 346    1    34   | 2    5   46 || 5   23   23  | 468    469  489  | 7    1   46 || 1   6    4   | 25     7    25   | 38   9   38 |+--------------+------------------+-------------+| 46  347  369 | 12467  246  1247 | 5    8   39 || 2   45   69  | 458    3    458  | 69   7   1  || 8   357  1   | 9      56   57   | 36   4   2  |+--------------+------------------+-------------+`
blue

Posts: 894
Joined: 11 March 2013

### Re: Steve's Stumble II

A complementary view ...
After basics, r3c1=4 solves the puzzle while r3c1=6 leads to a contradiction.
As any elimination can be justified by using a Forbidding Matrix,
the shortest interpretation of the contradiction is given by the following chain of inferences :
Code: Select all
`+---------------+---------------------+--------------+| 3   9     8   | 5(4)   (45)   6     | 1     2   7  || 7   2-4   26  | 13     8      139   | (49)  36  5  || 46  1     5   | 237    29     2379  | 489   36  89 |+---------------+---------------------+--------------+| 9   8     7   | 346    1      34    | 2     5   46 || 5   23    23  | 468    6(49)  4(89) | 7     1   46 || 1   6     4   | 25     7      25    | 38    9   38 |+---------------+---------------------+--------------+| 46  347   369 | 12467  26(4)  1247  | 5     8   39 || 2   5(4)  69  | 58(4)  3      5(48) | (69)  7   1  || 8   357   1   | 9      (56)   57    | 3(6)  4   2  |+---------------+---------------------+--------------+4r2c44r2c7=9r2c7      9r8c7=6r8c7            6r9c7=6r9c5                  5r9c5=5r1c5                        4r1c5=4r1c44r8c2=========================4r8c4=4r8c6                        4r1c5=======4r7c5=4r5c5                                    8r8c6=======8r5c6                                          9r5c5=9r5c6`
That 9-SIS FM (or nrczt-chain, here) can also be read in short as
r2c2=4->r2c7=9,r8c7=6,r9c5=6,r1c5=5,r1c4=4;r8c6=4=r5c5,r5c6=8; no place for a 9 in R5B5!

Reading the FM from the 7th row, one can write an "AIC"-like network :
Code: Select all
`Chain [9] : 4r8c2=*[Skyscraper(4r1c5=4r1c4-4r8c4=*4r8c6)-8r8c6=(8-9)r5c6=9r5c5]-...        ...-4r5c5=*[Kite(4r8c2=4r8c46-4r7c5=*4r1c5)-5r1c5=(5-6)r9c5=6r9c7-(6=9)r8c7-(9=4)r2c7]            :=> [4r8c2==4r2c7]-4r2c2; ste`
-------------------------------------------------------------------------------------------------------------------
If the puzzle is analyzed from B9 instead of B1,
the simpler following short solution is found, requiring only 7 SIS :
Code: Select all
`+----------------+------------------+--------------+| 3   9     8    | 45     45   6    | 1     2   7  || 7   (24)  (26) | 13     8    139  | (49)  36  5  || 46  1     5    | 237    29   2379 | 489   36  89 |+----------------+------------------+--------------+| 9   8     7    | 346    1    34   | 2     5   46 || 5   23    23   | 468    469  489  | 7     1   46 || 1   6     4    | 25     7    25   | 38    9   38 |+----------------+------------------+--------------+| 46  347   369  | 12467  246  1247 | 5     8   39 || 2   45    9-6  | 458    3    458  | (69)  7   1  || 8   357   1    | 9      56   57   | 36    4   2  |+----------------+------------------+--------------+`
#1. XYChain [4] : (6=9)r8c7-(9=4)r2c7-(4=2)r2c2-(2=6)r2c3 :=> -6r8c3; 10 Singles
Code: Select all
`+-------------+-------------------+------------+| 3   9    8  | 4    5     6      | 1   2   7  || 7   24   26 | 13   8     139    | 49  36  5  || 46  1    5  | 237  29    2379   | 49  36  8  |+-------------+-------------------+------------+| 9   8    7  | 36   1     34     | 2   5   46 || 5   23   23 | 68   (49)  4(89)  | 7   1   46 || 1   6    4  | 25   7     25     | 8   9   3  |+-------------+-------------------+------------+| 46  347  36 | 127  2(4)  1247   | 5   8   9  || 2   45   9  | 58   3     5-4(8) | 6   7   1  || 8   57   1  | 9    6     57     | 3   4   2  |+-------------+-------------------+------------+`
#2. Wing[8r8c6=(8-9)r5c6=(9-4)r5c5=4r7c5]-4r8c6; ste
JC Van Hay

Posts: 719
Joined: 22 May 2010

blue wrote:
daj95376 wrote:
blue wrote:In your depiction above, both X-wings would be Sashimi ? (one Franken, one normal) ?

Although your "fish" concept works, I had a problem because traditional fin cells were missing to make the fish patterns stable.

Body (not fin?) cells ?

Sorry, but this really isn't an issue. One of my biases about Fish came into play and blurred my objectivity. I was expecting an exo-fin cell to be present along with any remote/Kraken fin cells. Without an exo-fin cell, many fish will degenerate when the remote/Kraken fin cells are treated as being false. This isn't technically "a problem", but degeneration is how I often differentiate a Fish with remote/Kraken cells from a Kraken Unit scenario. That's why I transformed your solution into a Kraken Column on [c5].

With remote/Kraken fin cells considered false on your first fish, r2c5 needs to be an exo-fin cell to prevent degeneration.

Code: Select all
` X  *  * | . //  . | .  .  . X ** ** | .  #  . | .  .  . X  *  * | .  /  . | .  .  .---------+---------+--------- /  .  . | .  /  . | .  .  . /  .  . | . //  . | .  .  . /  .  . | .  /  . | .  .  .---------+---------+--------- X  *  * | *  X  * | *  *  * /  .  . | .  /  . | .  .  . /  .  . | .  /  . | .  .  . Fig 2D: cc\rb   (morphed RonK exemplar)`

Otherwise, we get:

Code: Select all
` X  *  * | . //  . | .  .  . X  *  * | .  /  . | .  .  . X  *  * | .  /  . | .  .  .---------+---------+--------- /  .  . | .  /  . | .  .  . /  .  . | . //  . | .  .  . /  .  . | .  /  . | .  .  .---------+---------+--------- X  *  * | *  X  * | *  *  * /  .  . | .  /  . | .  .  . /  .  . | .  /  . | .  .  . Degeneration when remote/Kraken fin cells are considered false (//) (X):  r7c5 - r7c1 = r3c1 - r2c2`

A similar situation occurs for your second fish.

I'm sorry for the confusion that I created !!!
daj95376
2014 Supporter

Posts: 2624
Joined: 15 May 2006

Previous