- Code: Select all
.......39.9...4..88.5..7......8..67.2.......4.67..1......6..3.11..2...9.95.......
.......39.9...4..88.5..7......8..67.2.......4.67..1......6..3.11..2...9.95.......
+-------+-------+-------+
! . . . ! . . . ! . 3 9 !
! . 9 . ! . . 4 ! . . 8 !
! 8 . 5 ! . . 7 ! . . . !
+-------+-------+-------+
! . . . ! 8 . . ! 6 7 . !
! 2 . . ! . . . ! . . 4 !
! . 6 7 ! . . 1 ! . . . !
+-------+-------+-------+
! . . . ! 6 . . ! 3 . 1 !
! 1 . . ! 2 . . ! . 9 . !
! 9 5 . ! . . . ! . . . !
+-------+-------+-------+
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 467 1247 124 ! 15 12568 2568 ! 12457 3 9 !
! 367 9 123 ! 135 12356 4 ! 1257 1256 8 !
! 8 1234 5 ! 139 12369 7 ! 124 1246 26 !
+-------------------+-------------------+-------------------+
! 345 134 1349 ! 8 23459 2359 ! 6 7 235 !
! 2 38 389 ! 3579 35679 3569 ! 159 15 4 !
! 345 6 7 ! 3459 23459 1 ! 2589 258 235 !
+-------------------+-------------------+-------------------+
! 47 2478 248 ! 6 45789 589 ! 3 2458 1 !
! 1 3478 3468 ! 2 34578 358 ! 458 9 567 !
! 9 5 23468 ! 1347 13478 38 ! 248 2468 267 !
+-------------------+-------------------+-------------------+
205 candidates.
yzfwsf wrote:
- Code: Select all
.......39.9...4..88.5..7......8..67.2.......4.67..1......6..3.11..2...9.95.......
|--------------------------------------------|
| 6 7 14 | 15 8 2 | 45 3 9 |
| 3 9 12 | 15 6 4 | 7 25 8 |
| 8 24 5 | 9 3 7 | 124 124 6 |
|------------------------------------------- |
| 4 1 9 | 8 2 5 | 6 7 3 |
| 2 38 38 | 7 9 6 | 15 15 4 |
| 5 6 7 | 3 4 1 | 9 8 2 |
|--------------------------------------------|
| 7 248 248 | 6 5 9 | 3 24 1 |
| 1 34 6 | 2 7 38 | 48 9 5 |
| 9 5 23 | 4 1 38 | 28 6 7 |
|--------------------------------------------|
Mauriès Robert wrote:Do you know how to demonstrate the consequences (validations, eliminations) of such symmetries, or where I can find references for this demonstration.
Mauriès Robert wrote:Do you know how to demonstrate the consequences (validations, eliminations) of such symmetries, or where I can find references for this demonstration.
Mauriès Robert wrote:Bravo for your resolution exploiting this central symmetry.
Do you know how to demonstrate the consequences (validations, eliminations) of such symmetries, or where I can find references for this demonstration.
denis_berthier wrote:Hi Robert
Mauricio's proof applies only for a special case of my statement. However, a similar proof applies to my general statement (to sets of solutions; when there's no uniqueness).
Mauriès Robert wrote:denis_berthier wrote:Hi Robert
Mauricio's proof applies only for a special case of my statement. However, a similar proof applies to my general statement (to sets of solutions; when there's no uniqueness).
If I understand correctly, using the symmetry of the puzzle to make eliminations or validations is not a uniqueness technique according to you ?
Mauriès Robert wrote:Hi Cenoman, François and Denis,
Here is the demonstration given by Mauricio. (automorphic-sudokues-t5588.html)
"If we assume uniqueness of the solution, we have the following proposition:
If A is an automorphism of the puzzle , then A is too an automorphism of its solution.
Proof: By contradiction, suppose that A is an automorphism of the puzzle and not an automorphism of its solution. If we apply the automorphism A to the solution, the puzzle remains the same, and the solution changes (as A is not an automorphism of the solution, the solution must change when we apply the automorphism to the solution). We have constructed 2 different grids that complete the puzzle, the original solution and the morphed solution, and so the original puzzle has 2 solutions, a contradiction to the uniqueness of the solution."
So I agree with Cenoman, this resolution technique is a Uniqueness Technique.
Robert