September 16, 2018

Post puzzles for others to solve here.

September 16, 2018

Postby ArkieTech » Sun Sep 16, 2018 11:29 am

Code: Select all
 *-----------*
 |5..|...|..2|
 |63.|7..|.4.|
 |..9|...|8..|
 |---+---+---|
 |...|6..|93.|
 |...|.7.|...|
 |.6.|..4|...|
 |---+---+---|
 |..2|...|5..|
 |.4.|..3|.7.|
 |8..|...|..9|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 2955
Joined: 29 May 2006
Location: NW Arkansas USA

Re: September 16, 2018

Postby SteveG48 » Sun Sep 16, 2018 3:48 pm

Code: Select all
 *--------------------------------------------------------------------*
 | 5      1      4      | 38     368    68     | 7      9      2      |
 | 6      3      8      | 7     d29    c29     | 1      4      5      |
 | 7      2      9      | 145    145  cd15     | 8      6      3      |
 *----------------------+----------------------+----------------------|
 | 4      58     157    | 6      1258   1258   | 9      3      17     |
 | 2     a589    135    | 13589  7     b1589   | 4     a58     6      |
 | 1-9    6      1357   | 13589  13589  4      | 2      58     17     |
 *----------------------+----------------------+----------------------|
 | 3      79     2      | 89     689    6789   | 5      1      4      |
 |f19     4     f15     | 2     e59     3      | 6      7      8      |
 | 8     e57     6      | 145    145  cd157    | 3      2      9      |
 *--------------------------------------------------------------------*


(9=58)r5c28 - (5|8=1|9)r5c6 - (1r39c6)&(9r2c6) = ((57)r39c6)|(9r2c5) - (79=5)r8c5,r9c2 - (5=19)r8c13 => -9 r6c1 ; stte
Steve
User avatar
SteveG48
2018 Supporter
 
Posts: 2355
Joined: 08 November 2013
Location: Orlando, Florida

Re: September 16, 2018

Postby Cenoman » Sun Sep 16, 2018 5:06 pm

Code: Select all
 +--------------------+-------------------------+-----------------+
 |  5    1     4      | e38      368     68     |  7    9    2    |
 |  6    3     8      |  7       29      29     |  1    4    5    |
 |  7    2     9      |  145     145     15     |  8    6    3    |
 +--------------------+-------------------------+-----------------+
 |  4    58    157*   |  6       1258    1258   |  9    3    17*  |
 |  2    589  c135#   | d13589   7       1589   |  4    58   6    |
 |  19   6     1357*  |  13589   13589   4      |  2    58   17*  |
 +--------------------+-------------------------+-----------------+
 |  3    79    2      | f89      689     6789   |  5    1    4    |
 |  19   4    b15#    |  2      a5-9     3      |  6    7    8    |
 |  8    57    6      |  145     145     157    |  3    2    9    |
 +--------------------+-------------------------+-----------------+

UR(17)r46c39 using externals 1r5c3==1r8c3
(5)r8c5 = (5-1)r8c3==(1-3)r5c3 = r5c4 - (3=8)r1c4 - (8=9)r7c4 => -9 r8c5; ste
Cenoman
Cenoman
 
Posts: 768
Joined: 21 November 2016
Location: Paris, France

Re: September 16, 2018

Postby Sudtyro2 » Sun Sep 16, 2018 8:44 pm

Major kudos for the solutions from Steve and Cenoman! Color me impressed!

SteveC
Sudtyro2
 
Posts: 588
Joined: 15 April 2013

Re: September 16, 2018

Postby SpAce » Sun Sep 16, 2018 8:53 pm

Code: Select all
.------------------.---------------------------.-----------.
|  5     1    4    | 38      368       68      | 7  9   2  |
|  6     3    8    | 7      *29       *29      | 1  4   5  |
|  7     2    9    | 145     145       15      | 8  6   3  |
:------------------+---------------------------+-----------:
|  4     58   157% | 6       1258      1258    | 9  3   17%|
|  2    *589 b35€1 |a1358#9  7        *1589    | 4  58  6  |
|c*9€1   6    1357%| 13589   1358(#9)  4       | 2  58  17%|
:------------------+---------------------------+-----------:
|  3     79   2    | 89      68(#9)    678(#9) | 5  1   4  |
|d*1(9)  4    51   | 2      *5-9       3       | 6  7   8  |
|  8     57   6    | 145     145       157     | 3  2   9  |
'------------------'---------------------------'-----------'

7-link Oddagon(*9)+4 #; UR(17%)r46c39 externals €

(9)r6c5,r7c56 == (9-3)r5c4 = (3-1)r5c3 == (1-9)r6c1 = (9)r8c1 => -9 r8c5; stte
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   
SpAce
 
Posts: 506
Joined: 22 May 2017

Re: September 16, 2018

Postby Cenoman » Sun Sep 16, 2018 9:41 pm

Sudtyro2 wrote:Major kudos for the solutions from Steve and Cenoman! Color me impressed!

SteveC


Thanks Steve !

A few minutes later, you could have associated SpAce to your congratulation message.
Using the UR inside the oddagon chains is very nice too !
Cenoman
Cenoman
 
Posts: 768
Joined: 21 November 2016
Location: Paris, France

Re: September 16, 2018

Postby SpAce » Sun Sep 16, 2018 11:34 pm

Cenoman wrote:A few minutes later, you could have associated SpAce to your congratulation message.
Using the UR inside the oddagon chains is very nice too !

Thanks, Cenoman! I appreciate it. My first attempt was effectively a variant of yours, so I had to figure out something different -- and it wasn't easy with this puzzle! Still ended up using the same UR, because the alternative wasn't as pretty:

Code: Select all
.-------------------.----------------------------.-----------.
|  5     1     4    | 38      368        68      | 7  9   2  |
|  6     3     8    | 7      *29        *29      | 1  4   5  |
|  7     2     9    | 145     145       c15      | 8  6   3  |
:-------------------+----------------------------+-----------:
|  4     58    157  | 6       1258       1258    | 9  3   17 |
|  2    *589  b135  |a1358#9  7        b*1589    | 4  58  6  |
| *19    6     1357 | 13589   1358(#9)   4       | 2  58  17 |
:-------------------+----------------------------+-----------:
|  3     79    2    | 89      68(#9)     678(#9) | 5  1   4  |
|d*1(9)  4    d15   | 2      *5-9        3       | 6  7   8  |
|  8    d57    6    | 145     145       c157     | 3  2   9  |
'-------------------'----------------------------'-----------'

7-link Oddagon(*9) + 4 guardians #


(9)r6c5,r7c56 == (9-3|1)r5c4 = (31)r5c36 - (15=7)r39c6 - (715=9)b7p864 => -9 r8c5; stte
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   
SpAce
 
Posts: 506
Joined: 22 May 2017

Re: September 16, 2018

Postby pjb » Mon Sep 17, 2018 12:04 am

Code: Select all
 5       1       4      | 38     368    68     | 7      9      2     
 6       3       8      | 7      29     29     | 1      4      5     
 7       2       9      |*145   *145   *15     | 8      6      3     
------------------------+----------------------+---------------------
 4       58      157    | 6      1258   1258   | 9      3      17     
 2       589     135    | 13589  7      1589   | 4      58     6     
 19      6       1357   | 13589  13589  4      | 2      58     17     
------------------------+----------------------+---------------------
 3       79      2      | 89     689    6789   | 5      1      4     
 19      4       15     | 2      59     3      | 6      7      8     
 8       57      6      |*145   * 145   *7-15   | 3      2      9     

BUG-lite (type 1) of 145 at r39c456 => -15 r9c6; stte

Phil
pjb
2014 Supporter
 
Posts: 2025
Joined: 11 September 2011
Location: Sydney, Australia

Re: September 16, 2018

Postby SpAce » Mon Sep 17, 2018 12:42 am

pjb wrote:BUG-lite (type 1) of 145 at r39c456 => -15 r9c6; stte

Very impressive! Is it actually a MUG, though? I thought BUGs and BUG-lites only dealt with bivalue cells (as the name implies).
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   
SpAce
 
Posts: 506
Joined: 22 May 2017

Re: September 16, 2018

Postby SteveG48 » Mon Sep 17, 2018 1:37 pm

pjb wrote:
Code: Select all
 5       1       4      | 38     368    68     | 7      9      2     
 6       3       8      | 7      29     29     | 1      4      5     
 7       2       9      |*145   *145   *15     | 8      6      3     
------------------------+----------------------+---------------------
 4       58      157    | 6      1258   1258   | 9      3      17     
 2       589     135    | 13589  7      1589   | 4      58     6     
 19      6       1357   | 13589  13589  4      | 2      58     17     
------------------------+----------------------+---------------------
 3       79      2      | 89     689    6789   | 5      1      4     
 19      4       15     | 2      59     3      | 6      7      8     
 8       57      6      |*145   * 145   *7-15   | 3      2      9     

BUG-lite (type 1) of 145 at r39c456 => -15 r9c6; stte

Phil


I'm not very good with uniqueness patterns, so I'm having trouble seeing this one.

Suppose, for example, r9c6 is a 5, and r3c6 is a 1. Then r3c45 is a 45 pair, and r9c45 is a 14 pair. Why is that a deadly pattern?
Steve
User avatar
SteveG48
2018 Supporter
 
Posts: 2355
Joined: 08 November 2013
Location: Orlando, Florida

Re: September 16, 2018

Postby SpAce » Mon Sep 17, 2018 2:07 pm

SteveG48 wrote:
pjb wrote:BUG-lite (type 1) of 145 at r39c456 => -15 r9c6; stte

I'm not very good with uniqueness patterns, so I'm having trouble seeing this one.

Suppose, for example, r9c6 is a 5, and r3c6 is a 1. Then r3c45 is a 45 pair, and r9c45 is a 14 pair. Why is that a deadly pattern?

It's not easy for me to see either. I found this possible explanation, though.
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   
SpAce
 
Posts: 506
Joined: 22 May 2017

Re: September 16, 2018

Postby Sudtyro2 » Mon Sep 17, 2018 2:14 pm

Hi Steve,
FWIW, here's my entire cheat sheet of MUGS, which includes the pattern in question...
Basic MUG patterns:
Deadly Test (aeb’s rule): “A pattern is deadly if every pattern that arises by discarding zero or more times all occurrences of a given digit from a given group [row,col,box] is a pattern without unique [or any] solution.”
Code: Select all
ab  .   .   | abc .   .   | bc  .   . 
ab  .   .   | abc .   .   | bc  .   . 
.   .   .   | .   .   .   | .   .   .

abc .   .   | abc .   .   | ab  .   . 
abc .   .   | abc .   .   | ab  .   . 
.   .   .   | .   .   .   | .   .   .
 
abc .   .   | abc .   .   | abc .   . 
abc .   .   | abc .   .   | abc .   . 
.   .   .   | .   .   .   | .   .   .

.   .   abc | abc .   .   | .   .   . 
.   .   abc | abc .   .   | .   .   . 
.   .   abc | abc .   .   | .   .   . 
   
.   .   abc | abc .   .   | .   .   . 
.   .   abc | abc .   .   | .   .   . 
.   .   ab  | ab  .   .   | .   .   . 
   

The full discussion is here:
http://forum.enjoysudoku.com/forming-mugs-from-bug-lite-composites-t3210.html#p21052

SteveC
Sudtyro2
 
Posts: 588
Joined: 15 April 2013

Re: September 16, 2018

Postby SteveG48 » Mon Sep 17, 2018 2:16 pm

Thanks, guys! Told you I wasn't good with these things.
Steve
User avatar
SteveG48
2018 Supporter
 
Posts: 2355
Joined: 08 November 2013
Location: Orlando, Florida

Re: September 16, 2018

Postby Sudtyro2 » Mon Sep 17, 2018 2:51 pm

SpAce wrote:
Code: Select all
.-------------------.----------------------------.-----------.
|  5     1     4    | 38      368        68      | 7  9   2  |
|  6     3     8    | 7      *29        *29      | 1  4   5  |
|  7     2     9    | 145     145       c15      | 8  6   3  |
:-------------------+----------------------------+-----------:
|  4     58    157  | 6       1258       1258    | 9  3   17 |
|  2    *589  b135  |a1358#9  7        b*1589    | 4  58  6  |
| *19    6     1357 | 13589   1358(#9)   4       | 2  58  17 |
:-------------------+----------------------------+-----------:
|  3     79    2    | 89      68(#9)     678(#9) | 5  1   4  |
|d*1(9)  4    d15   | 2      *5-9        3       | 6  7   8  |
|  8    d57    6    | 145     145       c157     | 3  2   9  |
'-------------------'----------------------------'-----------'
7-link Oddagon(*9) + 4 guardians #

(9)r6c5,r7c56 == (9-3|1)r5c4 = (31)r5c36 - (15=7)r39c6 - (715=9)b7p864 => -9 r8c5; stte

Hi SpAce,
First, I must certainly add a "well done" to you as well!

BTW, I had worked up two different 5-link oddagons for the 9s grid, and one of them had 9r5c4 as the only "tough" guardian, for which I simply could not find a suitable chain. My only question on your chain is about the two nodes marked in red above. That particular notation is new to me, but it seems perfectly legitimate. However, I finally realized that your marked segment is probably equivalent to 9r5c4 - (9=581)r5c268, with which I'm much more comfortable. Would you agree?

SteveC
Sudtyro2
 
Posts: 588
Joined: 15 April 2013

Re: September 16, 2018

Postby SpAce » Mon Sep 17, 2018 3:30 pm

Sudtyro2 wrote:
SpAce wrote:7-link Oddagon(*9) + 4 guardians #

(9)r6c5,r7c56 == (9-3|1)r5c4 = (31)r5c36 - (15=7)r39c6 - (715=9)b7p864 => -9 r8c5; stte

Hi SpAce,
First, I must certainly add a "well done" to you as well!

Thanks, Steve!

BTW, I had worked up two different 5-link oddagons for the 9s grid, and one of them had 9r5c4 as the only "tough" guardian, for which I simply could not find a suitable chain. My only question on your chain is about the two nodes marked in red above. That particular notation is new to me, but it seems perfectly legitimate. However, I finally realized that your marked segment is probably equivalent to 9r5c4 - (9=581)r5c268, with which I'm much more comfortable. Would you agree?

Yes. Mine is just the hidden alternative to your naked one. I thought about changing it because most prefer naked sets to hidden sets and it would have made it similar to the rest of the chain, but I kept the other route because that's how I originally saw it. The other reason was that a hidden pair is smaller than a naked triple so from that POV it's slightly simpler. In this case it's perhaps less readable, though, so I might agree that this is better:

(9)r6c5,r7c56 == (9)r5c4 - (9=581)r5c286 - (15=7)r39c6 - (715=9)b7p864 => -9 r8c5; stte

Sometimes naked ALS nodes are so huge that I would definitely prefer a smaller hidden variant, but here the difference is minimal.

Another matter of style is the number and placement of the digits in the ALS nodes, and I'm never quite sure which is best. I guess this would have been the most standard:

(9)r6c5,r7c56 == (9)r5c4 - (9=581)r5c286 - (1=57)r39c6 - (7=159)b7p864 => -9 r8c5; stte

...while some would prefer this:

(9)r6c5,r7c56 == (9)r5c4 - (9=1)r5c286 - (1=7)r39c6 - (7=9)b7p864 => -9 r8c5; stte

...while this might be the most accurate (though least readable):

(9)r6c5,r7c56 == (9)r5c4 - (958=581)r5c286 - (15=57)r39c6 - (715=159)b7p864 => -9 r8c5; stte

(Not to even mention the various orderings of the digits.) A simple language, yet so many choices!
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   
SpAce
 
Posts: 506
Joined: 22 May 2017


Return to Puzzles