## Savage attacking Monster :)

Post the puzzle or solving technique that's causing you trouble and someone will help
AHH! I wish I would have posted before Steve K because this thread looks so much more enticing when Steve K is shown as the last poster, no?

nah, i rather see steves post anywhere usually he brings alot of inresting stuff to the table and creates a huge stir of events or views of his move in many diffrent fashions.

very nice find steve
and thanks for the alternative views on the moves everyone.

{thanks a solution view norm!}
but what other paths could we take.

after all the fancy stuff the beast still lives.

shes taking a good beating but still not down and out yet.

where to go from here?

the grid as it is minus the first two move
followed by reduction by ss:}

Code: Select all
`.-----------------.------------------.-------------------.| 5    34     167 | 238   23678  178 | 2467  478   9     || 34   2      679 | 5     3678   789 | 467   1     478   || 17   179    8   | 26    4      179 | 3     5     26    |:-----------------+------------------+-------------------:| 6    13789  179 | 489   18     2   | 5     478   3478  || 378  3789   2   | 4689  5      48  | 1     4678  34678 || 18   5      4   | 7     168    3   | 26    9     28    |:-----------------+------------------+-------------------:| 2    47     3   | 1     9      5   | 8     467   467   || 478  6      5   | 348   378    478 | 9     2     1     || 9    1478   17  | 248   278    6   | 47    3     5     |'-----------------'------------------'-------------------'`
Some do, some teach, the rest look it up.

StrmCkr

Posts: 840
Joined: 05 September 2006

We can make Allan's deduction also linear:
(ht179)r3c126=(7)r12c3-(7=5)r8c3-(5)r7c2=(5)r7c6 =>r3c6<>5
Steve K

Posts: 98
Joined: 18 January 2007

ronk wrote:The r3c6<>5 deduction can be "linearized"

So is a chain now a linearization ?
The activisation of progressivity lives on...
aran

Posts: 334
Joined: 02 March 2007

Code: Select all
`500000009020000010008040300600002000000050100004703000003100800060000021900006035+--------------------+----------------------+-----------------------+| 5     34      167  | 238    23678  178    | (2467)  478    9      || 34    2       679  | 3589   36789  5789   | (4567)  1      478    || (17)  (179)   8    | 26-59  4      (1579) | 3       (567)  (267)  |+--------------------+----------------------+-----------------------+| 6     135789  1579 | 489    189    2      | (4579)  45789  3478   || 2378  3789    279  | 4689   5      489    | 1       46789  234678 || 128   1589    4    | 7      1689   3      | 26-59   589    28     |+--------------------+----------------------+-----------------------+| 247   457     3    | 1      279    4579   | 8       4679   467    || 478   6       57   | 34589  3789   45789  | (479)   2      1      || 9     1478    127  | 248    278    6      | (47)    3      5      |+--------------------+----------------------+-----------------------+als r12489c7.<n245679> -26- r3c12689.<n125679>  doubly-linked ALS ==> r3c4<>59, r6c7<>59`

I guess Allan's structure is a much simplified base/cover equivalent of the above doubly-linked ALS. Was that the joke? I guess it went over my head...

I don't have a "pure" ALS/DB solution, but I have several with about a dozen or so ALSs and/or DBs that only need two additional short NLs to complete.

Cheers,
Paul
PIsaacson

Posts: 249
Joined: 02 July 2008

Code: Select all
`500000009020000010008040300600002000000050100004703000003100800060000021900006035+--------------------+----------------------+-----------------------+| 5     34      167  | 238    23678  178    | (2467)  478    9      || 34    2       679  | 3589   36789  5789   | (4567)  1      478    || (17)  (179)   8    | 26-59  4      (1579) | 3       (567)  (267)  |+--------------------+----------------------+-----------------------+| 6     135789  1579 | 489    189    2      | (4579)  45789  3478   || 2378  3789    279  | 4689   5      489    | 1       46789  234678 || 128   1589    4    | 7      1689   3      | 26-59   589    28     |+--------------------+----------------------+-----------------------+| 247   457     3    | 1      279    4579   | 8       4679   467    || 478   6       57   | 34589  3789   45789  | (479)   2      1      || 9     1478    127  | 248    278    6      | (47)    3      5      |+--------------------+----------------------+-----------------------+als r12489c7.<n245679> -26- r3c12689.<n125679>  doubly-linked ALS ==> r3c4<>59, r6c7<>59`

Short, sharp and effective ! Nice.
aran

Posts: 334
Joined: 02 March 2007

PIsaacson wrote:I guess Allan's structure is a much simplified base/cover equivalent of the above doubly-linked ALS.

Very interesting, and very pretty. The two structures make a perfect ALS / AHS pair.

n
Allan Barker

Posts: 266
Joined: 20 February 2008

Code: Select all
`.-----------------.------------------.-------------------.| 5    34     167 | 238   23678  178 | 2467  478   9     || 34   2      679 | 5     3678   789 | 467   1     478   || 17   179    8   | 26    4      179 | 3     5     26    |:-----------------+------------------+-------------------:| 6    13789  179 | 489   18     2   | 5     478   3478  || 378  3789   2   | 4689  5      48  | 1     4678  34678 || 18   5      4   | 7     168    3   | 26    9     28    |:-----------------+------------------+-------------------:| 2    47     3   | 1     9      5   | 8     467   467   || 478  6      5   | 348   378    478 | 9     2     1     || 9    1478   17  | 248   278    6   | 47    3     5     |'-----------------'------------------'-------------------'`

Not many will like this move... :
i)3r2c5=(3-4)r2c1=4r1c2
ii)3r2c5=(3-4)r2c1=4r8c1-(4=7)r7c2-7r9c23
iii)3r2c5=(3-4)r2c1=4r8c1-(4=378)r8c456-7r9c5
iv)-7r9c235=7r9c7
v)-47=26r1c7
vi)-67=4r2c7-(4=3)r2c1-3r2c5.
=>nice loop.
It is perhaps of some interest from one point of view :
First the loop could have been closed much earlier.
Purpose of not closing was to extend the range of the post-loop analysis.
Analysis is this :
Since there is a loop, it can usefully be reversed : ie confronting the reversed positions gives opportunities for elimination.
Which turn out to be :
<7>r8c1 <4>r9c2 <7>r9c5 <4>r1c7.
It could certainly be argued that the above is equivalent to looking at both sides of 3r2c5 (true/false) and then drawing conclusions.
But then that is precisely the mechanism at work in analysis of simple nice loops, where its rule of thumb presentation is the well-known "weak-links conjugate".
For non-simple loops however, going back to the underlying basics is IMO the surest way to conduct the examination.
Last edited by aran on Sat May 02, 2009 4:13 pm, edited 1 time in total.
aran

Posts: 334
Joined: 02 March 2007

Code: Select all
` *-----------------------------------------------------------------------------* | 5       34      167     | 2368    23678   178     | 2467    4678    9       | | 34      2       679     | 35689   36789   5789    | 4567    1       4678    | | 17      179     8       | 2569    4       1579    | 3       567     267     | |-------------------------+-------------------------+-------------------------| | 6       135789  1579    | 489     189     2       | 4579    45789   3478    | | 2378    3789    279     | 4689    5       489     | 1       46789   234678  | | 128     1589    4       | 7       1689    3       | 2569    5689    268     | |-------------------------+-------------------------+-------------------------| | 247     457     3       | 1       279     4579    | 8       4679    467     | | 478     6       57      | 34589   3789    45789   | 479     2       1       | | 9       1478    127     | 248     278     6       | 47      3       5       | *-----------------------------------------------------------------------------*`
Another view at start:
01: (7)r3c12=(7)r12c3-(7=5)r8c3-(5)r7c2=(5)r7c6-(5=nt179)r3c126 => r3c89<>7
02: Swordfish 6’s column 3,5,7 => r6c89, r4c89, r2c9, r2c8, r12c4<> 6
03: (2)r6c7=(2)r1c7-(2=6)r3c9-(6)r3c4=(6)r5c4-(6)r6c5=(6)r6c7 => Loop: r6c7<>59, r3c8<>6, some singles

ttt
ttt

Posts: 185
Joined: 20 October 2006
Location: vietnam

with the chain direction reversed, ronk wrote:The r3c6<>5 deduction can be "linearized" too:

r3c6 -5- als:r3c489 -7- r3c12 =7= r12c3 -7- r8c3 -5- r7c2 =5= r7c6 -5- r3c6 ==> r3c6<>5

(5=7)als:r3c489 - (7)r3c12 = (7)r12c3 - (7=5)r8c3 - (5)r7c2 = (5)r7c6 ==> r3c6<>5

Steve K wrote:We can make Allan's deduction also linear:

(ht179)r3c126=(7)r12c3-(7=5)r8c3-(5)r7c2=(5)r7c6 =>r3c6<>5

My post was for Allan's deduction. That I replaced AHS 19r3 with the complementary ALS r3c489 should be of little consequence.
ronk
2012 Supporter

Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Ronk wrote:(5=7)als:r3c489 - (7)r3c12 = (7)r12c3 - (7=5)r8c3 - (5)r7c2 = (5)r7c6 ==> r3c6<>5

Steve K wrote:(ht179)r3c126=(7)r12c3-(7=5)r8c3-(5)r7c2=(5)r7c6 =>r3c6<>5

Ronk wrote:That I replaced AHS 19r3 with the complementary ALS r3c489 should be of little consequence.