- Code: Select all
. . . . . 4 . . 6
. . 2 8 . . 7 . .
. 8 . . 7 . . 3 .
. 9 . . . . . . 2
. . 5 . . . 6 . .
2 . . . . 5 . 8 .
. 5 . . 1 . . 6 .
. . 8 . . 7 9 . .
9 . . 6 . . . . . nice x-sudoku, pattern 277
. . . . . 4 . . 6
. . 2 8 . . 7 . .
. 8 . . 7 . . 3 .
. 9 . . . . . . 2
. . 5 . . . 6 . .
2 . . . . 5 . 8 .
. 5 . . 1 . . 6 .
. . 8 . . 7 9 . .
9 . . 6 . . . . . nice x-sudoku, pattern 277
7 . . . 5 . . . .
. 1 . 3 . . . 7 .
. . 4 . . . 5 . .
. 9 . . . 6 . . .
5 . . . 9 . . . 1
. . . 8 . . . 9 .
. . 2 . . . 3 . .
. 3 . . . 9 . 8 .
. . . . 7 . . . 6 nice X-sudoku, pattern from game 278
. 1 2 . 9 . . . .
3 7 . 2 . . . . .
9 . . . . . 2 . .
. 3 . . . 6 . 4 .
6 . . . 4 . 3 . .
. . . 7 . . . . 9
. . 5 . 6 . 8 . .
. . . 3 . . . . 5
. . . . . 5 . 7 . x-sudoku, easy
. 3 1 . 2 . . . .
4 9 . 1 . . . . .
7 . . . . . 9 . .
. 1 . . . 6 . 9 .
9 . . . 5 . 2 . .
. . . 2 . . . . 8
. . 7 . 1 . 3 . .
. . . 9 . . . . 7
. . . . . 5 . 4 . x-sudoku, fairly hard
1 . . 2 . . . . 3
. 4 . . 1 . . 5 .
. . 6 . . . 1 . .
3 . . . . 1 . 6 .
. 1 . . 4 . 5 . .
. . . 6 . . . . .
. . 4 . 6 . . . .
. 5 . 7 . . . 3 2
7 . . . . . . 8 . ED=7.8/1.2/1.2. Sum of values of clues = 91
1 . . | 6 . . | . . 3
. 4 . | . 1 . | . 5 .
. . 2 | . . . | 1 . .
-------+-------+-------
3 . . | . . 1 | . 2 .
. 1 . | . 4 . | 5 . .
. . . | 2 . . | . . .
-------+-------+-------
. . 4 | . 2 . | . . .
. 5 . | 7 . . | . 3 6
7 . . | . . . | . 8 . sum = 83
2 . . 4 . . . . 1
. 1 . . 3 . . 2 .
. . 4 . . . 3 . .
7 . . . . 6 . 5 .
. 5 . . 4 . 2 . .
. . . 1 . . . . .
. . 2 . 1 . . . .
. 3 . 2 . . . 1 8
1 . . . . . . 6 . ED=1.5/1.2/1.2. Sum of values of clues = 74
1 . . | 4 . . | . . 2
. 2 . | . 3 . | . 1 .
. . 8 | . . . | 3 . .
-------+-------+-------
2 . . | . . 1 | . 6 .
. 5 . | . 4 . | 1 . .
. . . | 3 . . | . . .
-------+-------+-------
. . 1 | . 2 . | . . .
. 3 . | 5 . . | . 2 4
4 . . | . . . | . 7 . ED=9.0/1.2/1.2. Sum of values of clues = 74
JPF wrote:or is there an explanation why the lowest bound must be 74 ?
3 . . 5 . . . . 1
. 2 . . 4 . . 3 .
. . 1 . . . 2 . .
2 . . . . 3 . 1 .
. 4 . . 2 . 6 . .
. . . 1 . . . . .
. . 6 . 7 . . . .
. 1 . 3 . . . 2 5
8 . . . . . . 4 . ED=1.5/1.2/1.2 Sum of values of clues = 76
1 . . 2 . . . . 3
. 2 . . 3 . . 1 .
. . 3 . . . 2 . .
2 . . . . 1 . 3 .
. 1 . . 2 . 4 . .
. . . 3 . . . . .
. . 1 . 4 . . . .
. 3 . 1 . . . 2 4
4 . . . . . . 5 . Sum of values of clues = 57, 355536 solutions.
. . . . . . . 1 .
. . . . . 1 . 2 3
. . 4 . 5 . . . .
. . . 2 . . . 4 .
. . 5 . 1 . 6 . . Patterns Game minimum
. 1 . . . 3 . . .
. . . . 7 . 4 . .
3 2 . 8 . . . . .
. 5 . . . . . . . ED=7.9/1.2/1.2, jpf. Sum of values of clues = 67
. . . . 1 . 4 . .
. 2 . . . . . . .
. . . . 3 . . . .
1 . 4 . . . . . .
. . . 3 . . . 2 . 17s minimum
6 . . . . . . 5 .
. . . 2 . . 7 3 .
4 . . . . . 1 . .
. 8 . 5 . . . . . No. of givens = 17. Sum of values of clues = 61
m_b_metcalf wrote:I, too, was wondering about a minimum (for this pattern). To this end, I constructed an Ur-puzzle putting in minimum values by hand such that the basic Sudoku constraints are fulfilled, as well on the constraints on minimality (number of occurrences of individual values, etc.). If I got it right, it's this:
- Code: Select all
1 . . 2 . . . . 3
. 2 . . 3 . . 1 .
. . 3 . . . 2 . .
2 . . . . 1 . 3 .
. 1 . . 2 . 4 . .
. . . 3 . . . . .
. . 1 . 4 . . . .
. 3 . 1 . . . 2 4
4 . . . . . . 5 . Sum of values of clues = 57, 355536 solutions.
However, to fulfill also the constraint that a minimum of eight individual values are required, I replaced three 4s by 6, 7 and 8 giving a sum of 66, the absolute theoretical minimum. So, there is still some way to go from 74 (except I can't find any with a smaller sum)! Please check this reasoning.
6 . . 2 . . . . 1
. 2 . . 7 . . 8 .
. . 1 . . . 2 . .
1 . . . . 3 . 2 .
. 5 . . 2 . 1 . .
. . . 1 . . . . .
. . 2 . 1 . . . .
. 1 . 3 . . . 4 2
3 . . . . . . 1 .
blue wrote:Edit: This pattern of 1's, couldn't be a part of a minimal puzzle though. 1r9c8 would always be redundant.
2..1....3
.4..2..1.
..3...5..
5....1.6.
.2..4.1..
...2.....
..7.1....
.1.4...28
6......3. Sum of values of clues = 74
dobrichev wrote:What was the maximal number occurrences of the same digit still not causing redundancy (regardless of the pattern)?
6 . . 2 . . . . 3
. 3 . . 7 . . 8 .
. . 4 . . . 2 . .
1 . . . . 3 . 2 .
. 5 . . 2 . 1 . .
. . . 1 . . . . .
. . 2 . 1 . . . . from blue's
. 1 . 3 . . . 4 2
9 . . . . . . 1 .
Sum of values of clues = 73, 94164 solutions
1 . . 3 . . . . 2
. 2 . . 8 . . 1 .
. . 3 . . . 5 . .
3 . . . . 4 . 6 .
. 5 . . 2 . 1 . .
. . . 1 . . . . .
. . 5 . 3 . . . .
. 1 . 2 . . . 4 7
4 . . . . . . 2 .
Sum of values of clues = 75
minimal sum of givens, #puzzles
74 2
75 7
76 9
77 36
78 56
79 859
80 187
81 2369
82 2138
83 19736
84 4626
85 60059
86 22362
87 155287
88 173345
89 221897
90 650127
91 1919409
93 573345
94 4138584
95 2206145
96 224
97 13468922
98 152565
99 786510
100 173571
101 9398735
102 6839072
105 11338874
. . . 4 2 . 1 . .
. 3 . . . . . . 5
. . . . . 1 . . .
7 2 4 . . . . . .
. . . 3 . . . 6 .
. . 1 . . . . . .
8 . . 5 1 . . . .
. . . . . . 2 3 .
. . . . . . . . . No. of givens = 17. Sum of values of clues = 58