Pat wrote:
- Code: Select all
13,...1.2....3.....4...1.5.6..5.......7..2.3.8..9.......5..6.8.3...1.....8....7.4...,21,-,-
does the compilation only consider box-line types independently?
otherwise #13 does solve when both box-line types are enabled
Pat wrote:
- Code: Select all
13,...1.2....3.....4...1.5.6..5.......7..2.3.8..9.......5..6.8.3...1.....8....7.4...,21,-,-
Yes, there are a lot of possible box-lines. But how would you solve it manually ?Mauricio wrote:This puzzle seems to use many instances of locked candidates 1 and 2
. . 2|. . .|. . 1
. . .|. . .|. . 2
. . 3|2 4 5|. 6 .
-----+-----+-----
. 3 .|. . .|. 1 4
. 5 .|. . 7|. . .
. 2 .|8 . .|. 5 .
-----+-----+-----
3 8 .|. 1 .|6 . 7
6 9 7|. . .|1 . .
2 . .|. 7 6|. 3 .
gsf wrote:Pat wrote:
- Code: Select all
13,...1.2....3.....4...1.5.6..5.......7..2.3.8..9.......5..6.8.3...1.....8....7.4...,21,-,-
does the compilation only consider box-line types independently?
otherwise #13 does solve when both box-line types are enabled
Mauricio (2007.May.30) wrote:
[ 22 clues ]
- Code: Select all
. . . | . . . | . . 1
. . . | . . . | . . 2
. . 3 | . 4 5 | . 6 .
-------+-------+------
. . . | . . . | . 1 4
. 5 . | . . 7 | . . .
. 2 . | 8 . . | . 5 .
-------+-------+------
. 8 . | . 1 . | . . 7
6 9 . | . . . | . . .
2 . . | . 7 6 | . 3 .
Pat wrote:gsf wrote:does the compilation only consider box-line types independently?
otherwise #13 does solve when both box-line types are enabled
exactly, "-,-" means that neither type on its own can solve the puzzle,
but the puzzle is on the list because using both types does solve it
01,97..483163681.7.4.14..367.82193758648364192577548621395.76.34814837.16..6.1.84.73,65,1,-,1
02,74.3.9.51.2.....8.5...2...32..6.3..7.........1..2.5..66...3...2.3.....7.95.1.7.38,30,2,-,2
03,..4......9..86.3.......91..4...5..76.5.9.4.1.32..8...9..92.......6.47..8......4..,26,1,-,1
04,91..3..284....7..3...8.5....43...8..6.......5..9...47....2.9...1..3....483..4..69,28,2,1,1
05,.6...491...4......3..5.8.......4...35.......72...9.......7.2..5......8...138...6.,22,1,-,1
06,7..1.5..3.9.....5....3.8...4.3...7.2.........8.2...9.4...7.6....3.....6.1..4.9...,23,1,-,1
07,...2.8..7.4.....9....5.6...3.7...6...........6.5...1.2...4.5....1.....3.9..7.2..4,22,1,-,1
08,...1.9.....1...3...2.....5.3...7...44...5...85...2...3.6.....2...7...6.....5.3...,21,3,2,2
09,..6....8.43..1..7....2....5....9.1...2.8.7.4...7.3....2....1....9..8..34.6....5..,24,-,1,1
10,...916.....3...1...4.....9.1...8...75..3.9..16...2...5.9.....4...8...2.....458...,24,-,2,2
11,...6.9.....1...7...2.....9.8...5...77...4...64...2...8.3.....2...5...3.....4.8...,21,-,5,5
12,..1....2.3.4....5.....63......5...1...2...6...7...8......31.....3....8.5.9....7..,20,4,-,4
13,...1.2....3.....4...1.5.6..5.......7..2.3.8..9.......5..6.8.3...1.....8....7.4...,21,-,-,4
14,........1........2..3.45.6........14.5...7....2.8...5..8..1...769.......2...76.3.,22,-,2,2
15,................12..3.45......6....7.71....8.9...28.....98.4.5..58...1..16...7.9.,24,-,-,2
16,............456.....17.92....2.1.3...5.....9.7.......4..3.8.1...4.....6.5.......9,21,-,4,4
17,5..3.6.....9.1.4.....5...7.37....6..8.......9..1....87.6...8.....8.4.1.....7.9..3,24,-,-,5
ravel wrote:Mauricio wrote:This puzzle seems to use many instances of locked candidates 1 and 2
Yes, there are a lot of possible box-lines. But how would you solve it manually ?
None of the boxlines give you a number directly.
But the hidden pair 35 in r12c7 leaves only r9c7 for the 4.
Or you spot the x-wing for 7 in r12c48, which together with the boxline in column 1 gives r3c2=7, r3c1=1. And then the UR 89 in r39c79. Since 8 cannot be in the rest of row 9, the 9 must be outside the rectangle, and the only place in box 9 is r7c8.
So counting boxlines for me is more of theoretical interest.
. . .|. . .|. . .
. . .|. . .|. 1 2
. . 3|. 4 5|. . .
-----+-----+-----
. . .|6 . .|. . 7
. 7 1|. . .|. 8 .
9 . .|. 2 8|. . .
-----+-----+-----
. . 9|8 . 4|. 5 .
. 5 8|. . .|1 . .
1 6 .|. . 7|. 9 .
a. Puzzle #
b. Max box-to-line when ISS.1 applied first \ max line-to-box when ISS.2 applied second
c. Max line-to-box when ISS.2 applied first \ max box-to-line when ISS.1 applied second
Group counts for a technique are separated by (+).
# ISS.1 \ISS.2 ISS.2 \ISS.1
01 ,2 \0 ,0 \2
02 ,1+1 \0 ,0 \1+1
03 ,5 \0 ,2+1 \3
04 ,4+1 \0 ,4 \0
05 ,6 \0 ,6 \2
06 ,5 \0 ,3 \2
07 ,7 \0 ,4 \3
08 ,10+1+1 \0 ,8+2 \0
09 ,2 \1 ,3 \0
10 ,8 \3 ,8+2 \0
11 ,12 \2+2+1+1 ,12+2+2+1+1\0
12 ,6+1+2+1\0 ,6+2+2 \1
13 ,5+4+1 \2 ,5+2+2+1 \3
14 ,9+1+1 \2 ,9+3 \0
15 ,4 \4 ,2+1+3 \2
Grouping for puzzle #15 with ISS.2\ISS.1 order
r7 b9 - 6 Locked Candidate 2 concurrent
c3b1 - 7 Locked Candidate 2 "
r3 b3 - 7 Locked Candidate 2
r8 b8 - 2 Locked Candidate 1 concurrent
c5b5 - 9 Locked Candidate 1 "
c9b9 - 3 Locked Candidate 2 concurrent
c9b9 - 4 Locked Candidate 2 "
c8b3 - 6 Locked Candidate 2 "
Mauricio (2007.Jun.1) wrote:
[ 24 clues ]
- Code: Select all
. . . | . . . | . . .
. . . | . . . | . 1 2
. . 3 | . 4 5 | . . .
-------+-------+------
. . . | 6 . . | . . 7
. 7 1 | . . . | . 8 .
9 . . | . 2 8 | . . .
-------+-------+------
. . 9 | 8 . 4 | . 5 .
. 5 8 | . . . | 1 . .
1 6 . | . . 7 | . 9 .
daj95376 wrote:I don't recall gsf's use of steps
daj95376 wrote:my concurrent all happen at one step.
Unfortunately, it doesn't answer your required criteria.
What an interesting search tree puzzle #11 must create -- starting with 24 initial box-line choices!
gsf wrote:first determine the cyclic permutation from the "minimal" puzzle (isomorphic to the original)
- Code: Select all
g -p ...6..3.7...12.6.5.........2.7.4.9.......3.1.5.4...........9.4.6.5......8.2.7....
which produces
- Code: Select all
r(149)(267)(358)c(168259347)