please could you explain what went on in this thread templates as patterns
It wasnt at all clear what the difference of opinion was ...ie 6 vv 3 in Tungsten Rod !! between the various schools...
000000007020400060100000500090002040000800600600900000005003000030080020700004001 .---------.---------.---------.
| 8 5 4 | 3 6 9 | 2 1 7 |
| 3 2 7 | 4 5 1 | 9 6 8 |
| 1 6 9 | 2 7 8 | 5 3 4 |
:---------+---------+---------:
| 5 9 8 | 6 1 2 | 7 4 3 |
| 4 1 2 | 8 3 7 | 6 5 9 |
| 6 7 3 | 9 4 5 | 1 8 2 |
:---------+---------+---------:
| 2 4 5 | 1 9 3 | 8 7 6 |
| 9 3 1 | 7 8 6 | 4 2 5 |
| 7 8 6 | 5 2 4 | 3 9 1 |
'---------'---------'---------'P.O. wrote:Similarly for combinations, for example a combination (1 2) is valid if it is compatible with at least one template for each of the other values
Performing these kinds of checks can lead to more template eliminations and therefore more candidate eliminations or placements.
This reduces the template depth of a puzzle, but it's not my preferred method.
.----------.-------------.---------.
| 3 8 6 | 79 27 29 | 1 4 5 |
| 7 4 5 | 6 8 1 | 9 2 3 |
| 2 9 1 | 3 4 5 | 6 7 8 |
:----------+-------------+---------:
| 1 5 38 | 78 37 4 | 2 9 6 |
| 4 2 39 | 19 13 6 | 8 5 7 |
| 6 7 89 | 589 25 29 | 4 3 1 |
:----------+-------------+---------:
| 8 1 7 | 2 9 3 | 5 6 4 |
| 9 6 4 | 15 15 7 | 3 8 2 |
| 5 3 2 | 4 6 8 | 7 1 9 |
'----------'-------------'---------'my analysis of the puzzle:
3 8 6 79 27 29 1 4 5
7 4 5 6 8 1 9 2 3
2 9 1 3 4 5 6 7 8
1 5 38 78 37 4 2 9 6
4 2 39 19 13 6 8 5 7
6 7 89 589 25 29 4 3 1
8 1 7 2 9 3 5 6 4
9 6 4 15 15 7 3 8 2
5 3 2 4 6 8 7 1 9
31 candidates. 66 values.
386...14574568192329134567815...429642...685767....431817293564964..7382532468719
the possible templates after initialization:
#VT: (2 2 2 1 2 1 2 2 3)
Cells: NIL NIL NIL NIL NIL NIL NIL NIL NIL
Candidates: NIL NIL NIL NIL NIL NIL NIL NIL NIL
#1: ((7 15 21 28 41 54 56 67 80) (7 15 21 28 40 54 56 68 80))
#2: ((6 17 19 34 38 50 58 72 75) (5 17 19 34 38 51 58 72 75))
#3: ((1 18 22 32 39 53 60 70 74) (1 18 22 30 41 53 60 70 74))
#4: ((8 11 23 33 37 52 63 66 76))
#5: ((9 12 24 29 44 50 61 67 73) (9 12 24 29 44 49 61 68 73))
#6: ((3 13 25 36 42 46 62 65 77))
#7: ((5 10 26 31 45 47 57 69 79) (4 10 26 32 45 47 57 69 79))
#8: ((2 14 27 31 43 48 55 71 78) (2 14 27 30 43 49 55 71 78))
#9: ((6 16 20 35 40 48 59 64 81) (6 16 20 35 39 49 59 64 81) (4 16 20 35 39 51 59 64 81))
without performing any validity checks, I need combinations of size 4 to solve it
Any of these combinations: (2 5 7 8) (5 7 8 9) (3 7 8 9) (2 3 7 9) (1 5 8 9)
for example (1 5 8 9)
Combining the templates for these values gives 4 instances, which eliminates one template for 9 and consequently places n9r5c3, thus solving the puzzle
(1 5 8 9): 4 instances
.8.9..1.5..5.819...91..5..815.8...9...9.1.85...85.9..181..9.5..9..15..8.5....8.19
.8...91.5..5.819...91..5..815.8...9...91..85...895...181..9.5..9..51..8.5....8.19
.8.9..1.5..5.819...91..5..815.8...9...91..85...8.59..181..9.5..9..51..8.5....8.19
.8.9..1.5..5.819...91..5..8158....9...91..85....859..181..9.5..9..51..8.5....8.19
......1.......1.....1......1............1............1.1..........1............1.
......1.......1.....1......1...........1.............1.1...........1...........1.
........5..5...........5....5..............5.....5..........5.....5.....5........
........5..5...........5....5..............5....5...........5......5....5........
.8...........8............8...8...........8....8......8...............8......8...
.8...........8............8..8............8.....8.....8...............8......8...
.....9.........9...9..............9...9.........9.........9....9................9
...9...........9...9..............9...9...........9.......9....9................9
#VT: (2 2 2 1 2 1 2 2 2)
Cells: NIL NIL NIL NIL NIL NIL NIL NIL (39)
SetVC: ( n9r5c3 n1r5c4 n3r5c5 n8r6c3 n5r8c4 n1r8c5 n3r4c3 n7r4c5 n9r6c4 n2r6c6
n7r1c4 n2r1c5 n9r1c6 n8r4c4 n5r6c5 )
3 8 6 7 2 9 1 4 5
7 4 5 6 8 1 9 2 3
2 9 1 3 4 5 6 7 8
1 5 3 8 7 4 2 9 6
4 2 9 1 3 6 8 5 7
6 7 8 9 5 2 4 3 1
8 1 7 2 9 3 5 6 4
9 6 4 5 1 7 3 8 2
5 3 2 4 6 8 7 1 9
with validity checks it is solved with combinations of size 2
Any of these combinations: (5 7) (2 3) (8 9) (5 9)
for example (5 9)
Combining the templates for these values gives 5 instances
(5 9): 5 instances
.....9..5..5...9...9...5....5.....9....9...5...9.5........9.5..9..5.....5.......9
.....9..5..5...9...9...5....5.....9...9....5....95........9.5..9..5.....5.......9
...9....5..5...9...9...5....5.....9...9....5.....59.......9.5..9..5.....5.......9
.....9..5..5...9...9...5....5.....9....9...5...95.........9.5..9...5....5.......9
...9....5..5...9...9...5....5.....9...9....5....5.9.......9.5..9...5....5.......9
After checking these instances, only 2 remain
.....9..5..5...9...9...5....5.....9...9....5....95........9.5..9..5.....5.......9
...9....5..5...9...9...5....5.....9...9....5....5.9.......9.5..9...5....5.......9
which eliminates one template for 9
#VT(2 2 2 1 2 1 2 2 2)
Checking the remaining templates leaves only one for each value
#VT(1 1 1 1 1 1 1 1 1)
(5 9): 1 instance
.....9..5..5...9...9...5....5.....9...9....5....95........9.5..9..5.....5.......9
........5..5...........5....5..............5.....5..........5.....5.....5........
.....9.........9...9..............9...9.........9.........9....9................9
#VT: (1 1 1 1 1 1 1 1 1)
Cells: (40 68) (5 51) (30 41) NIL (50 67) NIL (4 32) (31 48) (6 39 49)
SetVC: ( n7r1c4 n2r1c5 n9r1c6 n3r4c3 n8r4c4 n7r4c5 n9r5c3 n1r5c4 n3r5c5 n8r6c3
n9r6c4 n5r6c5 n2r6c6 n5r8c4 n1r8c5 )
3 8 6 7 2 9 1 4 5
7 4 5 6 8 1 9 2 3
2 9 1 3 4 5 6 7 8
1 5 3 8 7 4 2 9 6
4 2 9 1 3 6 8 5 7
6 7 8 9 5 2 4 3 1
8 1 7 2 9 3 5 6 4
9 6 4 5 1 7 3 8 2
5 3 2 4 6 8 7 1 9
with validity checks it is solved with combinations of size 2
Any of these combinations: (5 7) (2 3) (8 9) (5 9)
for example (5 9)
Combining the templates for these values gives 5 instances
(5 9): 5 instances
.....9..5..5...9...9...5....5.....9....9...5...9.5........9.5..9..5.....5.......9
.....9..5..5...9...9...5....5.....9...9....5....95........9.5..9..5.....5.......9
...9....5..5...9...9...5....5.....9...9....5.....59.......9.5..9..5.....5.......9
.....9..5..5...9...9...5....5.....9....9...5...95.........9.5..9...5....5.......9
...9....5..5...9...9...5....5.....9...9....5....5.9.......9.5..9...5....5.......9
After checking these instances, only 2 remain
.....9..5..5...9...9...5....5.....9...9....5....95........9.5..9..5.....5.......9
...9....5..5...9...9...5....5.....9...9....5....5.9.......9.5..9...5....5.......9