Today I used again Sukaku Explainer new feature in a brand new puzzle Rita (created by coloin).
Hidden Text: Show
initially without PMs
CH=cross-hatching,
PP=pointing pair,
CP=conjugate pair
LC=locked candidates,
FH=full house,
NS=only possible candidate in the cell (naked single)
OPR(n; r)=only place n can go in row r
OPC(n; s)=only place n can go in column s
OPB(n; m)=only place n can go in block m
1. r4c7=6 (CH)
2. r7c1=4 (OPR(4;7))
3. r8c1=9 (in b9 a 9 can go only at r9c89, so by CH r8c1=9)
4. r8c6=7 (78 are the only possible candidates in r8c56 and r2c6=8)
5. r8c5=8 (FH in r8)
6. r6c4=8 (by CH the only places 8 can go in b6 is r5c89, so by CH r6c4=8)
7. r9c1=7 (OPC(7;1))
8. r5c3=7 (CH)
9. r5c2=3 (CH)
10. r6c1=2 (OCC)
11. r1c1=3 (FH)
12. r9c3=3 (CH)
13. r4c6=3 (OPC(3;6))
turning candidates list on
14. r6c5<>9 (LP 59 in r6b4)
15. r6c6<>9 (LP 59 in r6b4)
16. r6c5<>5 (LP 59 in r6b4)
17. r5c6<>4 (LP 46 in b5 and r6)
18. r5c5<>4 (LP 46 in b5 and r6)
19. r5c4<>4 (LP 46 in b5 and r6)
20. r1c8<>1 (CP 1s in r79c8)
21. r5c9<>9 (LC 259 in b6p234)
22. r5c9<>5 (LC 259 in b6p234)
23. r5c9<>2 (LC 259 in b6p234)
24. r5c8<>2 (LC 259 in b6p234)
25. r5c8<>9 (LC 259 in b6p234)
26. r4c4<>2 (PP of 2s in r4c89)
27. r4c5<>2 (PP of 2s in r4c89)
28. W-wing in 89:
W-wing (9=8)r1c3-r7c3=r7c8-(8=9)r9c9 => r1c9<>9
29. Finned Swordfish in 9
Finned Swordfish in 9 with r249 c589, fin at r2c7 => -9 r1c8,r3c9
(the fin r2c7 can see both r1c8, r3c9)
30. W-Wing with 4 eliminations
w-wing (4=2) r1c8-r1c2=r3c2-(2=4)r3c4 => -4 r1c456, r3c9
31. An AIC
(2=9)r3c2-(9=5)r6c2-(5=8)r9c2-r9c9=(8-4)r5c9=(4)r1c9-(4=2)r1c8 => -2 r1c2,r3c9 (+3r3c9);
32. PP 89 in r1c23, b1 => -9 r1c5679, -9r3c2 (+2r3c2)
33. r2c5=3 (OPB(3;2))
34. r3c5=9 (OPB(9;2)) and -9 r45c5
35. LP 57 in r4, b5 => -5 r5c45, r4c9
36. LP 29 in b6 => -9 r5c7 (+5r9c7)
37. r1c7=1 (NS)
38. r2c7=9 (NS)
39. r2c9=2 (NS)
40. r1c8=4 (NS)
41. r1c9=5 (NS)
42. r4c9=9 (NS)
43. r9c9=8 (NS)
44. r5c9=4 (NS)
45. r4c8=2 (NS)
46. r5c8=8 (NS)
47. r3c4=4 (NS)
49. r7c8=1 (NS)
50. r9c8=9 (NS)
51. r2c4=1 (FH)
52. r7c6=2 (NS)
53. r9c2=5 (NS)
54. r7c3=8 (FH)
55. r7c5=5 (FH)
56. r5c4=2 (NS)
57. r1c6=6 (NS)
58. r6c2=9 (NS)
59. r1c2=8 (FH)
60. r1c3=9 (FH)
61. r6c3=5 (FH)
62. r9c4=6 (NS)
63. r4c5=7 (NS)
64. r4c4=5 (FH)
65. r1c4=7 (FH)
66. r1c5=2 (FH)
67. r5c5=1 (NS)
68. r5c6=9 (FH)
69. r6c6=4 (NS)
70. r6c5=6 (FH)
71. r9c5=4 (FH)
72. r9c6=1 (FH)
end
* SE sends the list of moves made with diagrams for every move as show in the link given. I removed the diagrams and added comments for each move. The solution path was produced for the moves up to move 13 and for the moves 32 to 72. Notice that for instance Hodoku does not produce the solution path created by the user, only the ones that are part of the possible solution paths in the code.
CH=cross-hatching,
PP=pointing pair,
CP=conjugate pair
LC=locked candidates,
FH=full house,
NS=only possible candidate in the cell (naked single)
OPR(n; r)=only place n can go in row r
OPC(n; s)=only place n can go in column s
OPB(n; m)=only place n can go in block m
1. r4c7=6 (CH)
2. r7c1=4 (OPR(4;7))
3. r8c1=9 (in b9 a 9 can go only at r9c89, so by CH r8c1=9)
4. r8c6=7 (78 are the only possible candidates in r8c56 and r2c6=8)
5. r8c5=8 (FH in r8)
6. r6c4=8 (by CH the only places 8 can go in b6 is r5c89, so by CH r6c4=8)
7. r9c1=7 (OPC(7;1))
8. r5c3=7 (CH)
9. r5c2=3 (CH)
10. r6c1=2 (OCC)
11. r1c1=3 (FH)
12. r9c3=3 (CH)
13. r4c6=3 (OPC(3;6))
turning candidates list on
14. r6c5<>9 (LP 59 in r6b4)
15. r6c6<>9 (LP 59 in r6b4)
16. r6c5<>5 (LP 59 in r6b4)
17. r5c6<>4 (LP 46 in b5 and r6)
18. r5c5<>4 (LP 46 in b5 and r6)
19. r5c4<>4 (LP 46 in b5 and r6)
20. r1c8<>1 (CP 1s in r79c8)
21. r5c9<>9 (LC 259 in b6p234)
22. r5c9<>5 (LC 259 in b6p234)
23. r5c9<>2 (LC 259 in b6p234)
24. r5c8<>2 (LC 259 in b6p234)
25. r5c8<>9 (LC 259 in b6p234)
26. r4c4<>2 (PP of 2s in r4c89)
27. r4c5<>2 (PP of 2s in r4c89)
28. W-wing in 89:
- Code: Select all
+----------------------+----------------------+----------------------+
| 3 289 *89 | 12467 124679 12469 | 159 249 245-9 |
| 5 7 4 | 12 1239 8 | 19 6 239 |
| 1 29 6 | 24 2349 5 | 8 7 2349 |
+----------------------+----------------------+----------------------+
| 8 4 1 | 57 579 3 | 6 29 259 |
| 6 3 7 | 125 1259 129 | 59 48 48 |
| 2 59 59 | 8 46 46 | 7 3 1 |
+----------------------+----------------------+----------------------+
| 4 6 *58 | 9 125 12 | 3 *18 7 |
| 9 1 2 | 3 8 7 | 4 5 6 |
| 7 58 3 | 1456 1456 146 | 2 189 *89 |
+----------------------+----------------------+----------------------+
W-wing (9=8)r1c3-r7c3=r7c8-(8=9)r9c9 => r1c9<>9
29. Finned Swordfish in 9
- Code: Select all
+----------------------+----------------------+----------------------+
| 3 289 89 | 12467 124679 12469 | 159 24-9 2459 |
| 5 7 4 | 12 *1239 8 |#19 6 *239 |
| 1 29 6 | 24 2349 5 | 8 7 234-9 |
+----------------------+----------------------+----------------------+
| 8 4 1 | 57 *579 3 | 6 *29 *259 |
| 6 3 7 | 125 1259 129 | 59 48 48 |
| 2 59 59 | 8 46 46 | 7 3 1 |
+----------------------+----------------------+----------------------+
| 4 6 58 | 9 125 12 | 3 18 7 |
| 9 1 2 | 3 8 7 | 4 5 6 |
| 7 58 3 | 1456 1456 146 | 2 *189 *89 |
+----------------------+----------------------+----------------------+
Finned Swordfish in 9 with r249 c589, fin at r2c7 => -9 r1c8,r3c9
(the fin r2c7 can see both r1c8, r3c9)
30. W-Wing with 4 eliminations
- Code: Select all
+----------------------+-----------------------+----------------------+
| 3 b289 89 | 12-467 12-4679 12-469 | 159 a24 2459 |
| 5 7 4 | 12 1239 8 | 19 6 239 |
| 1 c29 6 |d24 2349 5 | 8 7 23-4 |
+----------------------+-----------------------+----------------------+
| 8 4 1 | 57 579 3 | 6 29 259 |
| 6 3 7 | 125 1259 129 | 59 48 48 |
| 2 59 59 | 8 46 46 | 7 3 1 |
+----------------------+-----------------------+----------------------+
| 4 6 58 | 9 125 12 | 3 18 7 |
| 9 1 2 | 3 8 7 | 4 5 6 |
| 7 58 3 | 1456 1456 146 | 2 189 89 |
+----------------------+-----------------------+----------------------+
w-wing (4=2) r1c8-r1c2=r3c2-(2=4)r3c4 => -4 r1c456, r3c9
31. An AIC
- Code: Select all
+----------------------+-----------------------+----------------------+
| 3 -289 89 | 1267 12679 1269 | 159 g24 f2459 |
| 5 7 4 | 12 1239 8 | 19 6 239 |
| 1 a29 6 | 24 2349 5 | 8 7 -23 |
+----------------------+-----------------------+----------------------+
| 8 4 1 | 57 579 3 | 6 29 259 |
| 6 3 7 | 125 1259 129 | 59 48 e48 |
| 2 b59 59 | 8 46 46 | 7 3 1 |
+----------------------+-----------------------+----------------------+
| 4 6 58 | 9 125 12 | 3 18 7 |
| 9 1 2 | 3 8 7 | 4 5 6 |
| 7 c58 3 | 1456 1456 146 | 2 189 d89 |
+----------------------+-----------------------+----------------------+
(2=9)r3c2-(9=5)r6c2-(5=8)r9c2-r9c9=(8-4)r5c9=(4)r1c9-(4=2)r1c8 => -2 r1c2,r3c9 (+3r3c9);
32. PP 89 in r1c23, b1 => -9 r1c5679, -9r3c2 (+2r3c2)
33. r2c5=3 (OPB(3;2))
34. r3c5=9 (OPB(9;2)) and -9 r45c5
35. LP 57 in r4, b5 => -5 r5c45, r4c9
36. LP 29 in b6 => -9 r5c7 (+5r9c7)
37. r1c7=1 (NS)
38. r2c7=9 (NS)
39. r2c9=2 (NS)
40. r1c8=4 (NS)
41. r1c9=5 (NS)
42. r4c9=9 (NS)
43. r9c9=8 (NS)
44. r5c9=4 (NS)
45. r4c8=2 (NS)
46. r5c8=8 (NS)
47. r3c4=4 (NS)
49. r7c8=1 (NS)
50. r9c8=9 (NS)
51. r2c4=1 (FH)
52. r7c6=2 (NS)
53. r9c2=5 (NS)
54. r7c3=8 (FH)
55. r7c5=5 (FH)
56. r5c4=2 (NS)
57. r1c6=6 (NS)
58. r6c2=9 (NS)
59. r1c2=8 (FH)
60. r1c3=9 (FH)
61. r6c3=5 (FH)
62. r9c4=6 (NS)
63. r4c5=7 (NS)
64. r4c4=5 (FH)
65. r1c4=7 (FH)
66. r1c5=2 (FH)
67. r5c5=1 (NS)
68. r5c6=9 (FH)
69. r6c6=4 (NS)
70. r6c5=6 (FH)
71. r9c5=4 (FH)
72. r9c6=1 (FH)
end
* SE sends the list of moves made with diagrams for every move as show in the link given. I removed the diagrams and added comments for each move. The solution path was produced for the moves up to move 13 and for the moves 32 to 72. Notice that for instance Hodoku does not produce the solution path created by the user, only the ones that are part of the possible solution paths in the code.
I started in SE and had plans to keep going even after turning on the candidates list (any elimination listed in solution path would be latter justified by myself, for instance, if it was a result of turbot fish elimination). Unfortunately when a candidate is eliminated, it is written in the solution path as if the candidate was placed in the cell. I guess this happens because that feature was supposed to be used when solving puzzles completely without PMs.
Regards,
jco
[Edit: added name of the creator of the puzzle]