I studied patterns occupying alone band (stack) of the grid. Here is an example of such pattern:
- Code: Select all
+-----+-----+-----+
|. . .|. . .|. . x|
|. . .|. . .|. x x|
|. . .|. . x|. . .|
+-----+-----+-----+
As usual "x" denotes band's cells which must contain puzzle's clues.
How many are there essentially different one-band patterns?
I assume common set of isomorphic transformations:
1. Boxes permutations (6 ways).
2. Rows permutations within the band (6 ways).
3. Columns permutations within B1 box (6 ways).
4. Columns permutations within B2 box (6 ways).
5. Columns permutations within B3 box (6 ways).
2 patterns are called isomorphic when the first pattern can be transformed to the second pattern by some sequence of isomorphic transformations.
There are 2^27 one-band patterns in total (band contains 27 cells, each cell can belong or not belong to the pattern) = 134217728 patterns.
A pattern can have at most 7776 isomorhic patterns (6^5). So, there can exist not less than 134217728/7776 = 17260.51 essentially different one-band patterns. Real number of such patterns is certainly higher because of automorphisms - "average" pattern has less than 7776 isomorhic patterns.
I wrote special program to count all essentially different one-band patterns. It turns out, there are 51912 essentially different one-band patterns.
But some of such one-band patterns cannot participate patterns of valid sudoku puzzles, because they contain, for example, 2 empty rows. Let me call such one-band patterns invalid (valid one-band patterns can participate patterns of valid sudoku puzzles). To filter out invalid patterns one should consider not only patterns having empty rows, but also patterns having 2 empty boxes and third box containing less than 4 clues (see thread Investigation of one-band-free patterns on this forum). It turns out that there are 31 invalid one-band patterns only. So, there exist 51912-31=51881 valid one-band patterns.
To present my results in details I should consider band maps. Such map has 3 digits - one digit per box, denoting number of clues of each box. For example, posted above band has map
- Code: Select all
0 1 3
We shall consider ordered band maps where boxes are sorted in such way that B2 box has not less clues than B1 box and B3 box has not less clues than B2 box. There are 220 ordered band maps (simple combinatoric calculation - starting with "0 0 0" map and ending with "9 9 9" map).
Here are more detailed results for all 220 different band maps.
- Code: Select all
Band Patterns Valid Invalid
0 0 0 1 0 1
0 0 1 1 0 1
0 0 2 3 0 3
0 0 3 6 0 6
0 0 4 7 4 3
0 0 5 7 6 1
0 0 6 6 6 0
0 0 7 3 3 0
0 0 8 1 1 0
0 0 9 1 1 0
0 1 1 2 1 1
0 1 2 6 5 1
0 1 3 12 11 1
0 1 4 16 16 0
0 1 5 16 16 0
0 1 6 12 12 0
0 1 7 6 6 0
0 1 8 2 2 0
0 1 9 1 1 0
0 2 2 12 11 1
0 2 3 36 35 1
0 2 4 48 48 0
0 2 5 48 48 0
0 2 6 36 36 0
0 2 7 18 18 0
0 2 8 6 6 0
0 2 9 3 3 0
0 3 3 45 44 1
0 3 4 100 100 0
0 3 5 100 100 0
0 3 6 76 76 0
0 3 7 36 36 0
0 3 8 12 12 0
0 3 9 6 6 0
0 4 4 76 76 0
0 4 5 134 134 0
0 4 6 100 100 0
0 4 7 48 48 0
0 4 8 16 16 0
0 4 9 7 7 0
0 5 5 76 76 0
0 5 6 100 100 0
0 5 7 48 48 0
0 5 8 16 16 0
0 5 9 7 7 0
0 6 6 45 45 0
0 6 7 36 36 0
0 6 8 12 12 0
0 6 9 6 6 0
0 7 7 12 12 0
0 7 8 6 6 0
0 7 9 3 3 0
0 8 8 2 2 0
0 8 9 1 1 0
0 9 9 1 1 0
1 1 1 3 2 1
1 1 2 12 11 1
1 1 3 24 23 1
1 1 4 32 32 0
1 1 5 32 32 0
1 1 6 24 24 0
1 1 7 12 12 0
1 1 8 4 4 0
1 1 9 2 2 0
1 2 2 27 26 1
1 2 3 96 95 1
1 2 4 129 129 0
1 2 5 129 129 0
1 2 6 96 96 0
1 2 7 45 45 0
1 2 8 15 15 0
1 2 9 6 6 0
1 3 3 114 113 1
1 3 4 280 280 0
1 3 5 280 280 0
1 3 6 208 208 0
1 3 7 96 96 0
1 3 8 32 32 0
1 3 9 12 12 0
1 4 4 202 202 0
1 4 5 377 377 0
1 4 6 280 280 0
1 4 7 129 129 0
1 4 8 43 43 0
1 4 9 16 16 0
1 5 5 202 202 0
1 5 6 280 280 0
1 5 7 129 129 0
1 5 8 43 43 0
1 5 9 16 16 0
1 6 6 114 114 0
1 6 7 96 96 0
1 6 8 32 32 0
1 6 9 12 12 0
1 7 7 27 27 0
1 7 8 15 15 0
1 7 9 6 6 0
1 8 8 4 4 0
1 8 9 2 2 0
1 9 9 1 1 0
2 2 2 38 37 1
2 2 3 168 167 1
2 2 4 225 225 0
2 2 5 225 225 0
2 2 6 168 168 0
2 2 7 81 81 0
2 2 8 27 27 0
2 2 9 12 12 0
2 3 3 342 341 1
2 3 4 840 840 0
2 3 5 840 840 0
2 3 6 624 624 0
2 3 7 288 288 0
2 3 8 96 96 0
2 3 9 36 36 0
2 4 4 606 606 0
2 4 5 1131 1131 0
2 4 6 840 840 0
2 4 7 387 387 0
2 4 8 129 129 0
2 4 9 48 48 0
2 5 5 606 606 0
2 5 6 840 840 0
2 5 7 387 387 0
2 5 8 129 129 0
2 5 9 48 48 0
2 6 6 342 342 0
2 6 7 288 288 0
2 6 8 96 96 0
2 6 9 36 36 0
2 7 7 81 81 0
2 7 8 45 45 0
2 7 9 18 18 0
2 8 8 12 12 0
2 8 9 6 6 0
2 9 9 3 3 0
3 3 3 286 285 1
3 3 4 990 990 0
3 3 5 990 990 0
3 3 6 738 738 0
3 3 7 342 342 0
3 3 8 114 114 0
3 3 9 45 45 0
3 4 4 1312 1312 0
3 4 5 2480 2480 0
3 4 6 1840 1840 0
3 4 7 840 840 0
3 4 8 280 280 0
3 4 9 100 100 0
3 5 5 1312 1312 0
3 5 6 1840 1840 0
3 5 7 840 840 0
3 5 8 280 280 0
3 5 9 100 100 0
3 6 6 738 738 0
3 6 7 624 624 0
3 6 8 208 208 0
3 6 9 76 76 0
3 7 7 168 168 0
3 7 8 96 96 0
3 7 9 36 36 0
3 8 8 24 24 0
3 8 9 12 12 0
3 9 9 6 6 0
4 4 4 657 657 0
4 4 5 1766 1766 0
4 4 6 1312 1312 0
4 4 7 606 606 0
4 4 8 202 202 0
4 4 9 76 76 0
4 5 5 1766 1766 0
4 5 6 2480 2480 0
4 5 7 1131 1131 0
4 5 8 377 377 0
4 5 9 134 134 0
4 6 6 990 990 0
4 6 7 840 840 0
4 6 8 280 280 0
4 6 9 100 100 0
4 7 7 225 225 0
4 7 8 129 129 0
4 7 9 48 48 0
4 8 8 32 32 0
4 8 9 16 16 0
4 9 9 7 7 0
5 5 5 657 657 0
5 5 6 1312 1312 0
5 5 7 606 606 0
5 5 8 202 202 0
5 5 9 76 76 0
5 6 6 990 990 0
5 6 7 840 840 0
5 6 8 280 280 0
5 6 9 100 100 0
5 7 7 225 225 0
5 7 8 129 129 0
5 7 9 48 48 0
5 8 8 32 32 0
5 8 9 16 16 0
5 9 9 7 7 0
6 6 6 286 286 0
6 6 7 342 342 0
6 6 8 114 114 0
6 6 9 45 45 0
6 7 7 168 168 0
6 7 8 96 96 0
6 7 9 36 36 0
6 8 8 24 24 0
6 8 9 12 12 0
6 9 9 6 6 0
7 7 7 38 38 0
7 7 8 27 27 0
7 7 9 12 12 0
7 8 8 12 12 0
7 8 9 6 6 0
7 9 9 3 3 0
8 8 8 3 3 0
8 8 9 2 2 0
8 9 9 1 1 0
9 9 9 1 1 0
Totally processed 220 bands
Patterns in total: 51912
Valid patterns: 51881
Invalid patterns: 31
Let's consider, for example, band map "1 1 1". As you can see from the table posted above, there are 3 non-isomorphic patterns for this map, but 1 pattern is invalid, so there are 2 valid non-isomorphic patterns for this map.
Here are all non-isomorphic patterns for map "1 1 1":
- Code: Select all
+-----+-----+-----+ +-----+-----+-----+ +-----+-----+-----+
|. . .|. . .|. . .| |. . .|. . .|. . .| |. . .|. . .|. . x|
|. . .|. . .|. . .| |. . .|. . .|. . x| |. . .|. . x|. . .|
|. . x|. . x|. . x| |. . x|. . x|. . .| |. . x|. . .|. . .|
+-----+-----+-----+ +-----+-----+-----+ +-----+-----+-----+
As you can see, the first pattern is invalid, because it contains 2 empty rows. So, there exist 2 valid non-isomorphic patterns for this map.
It is worth noting that 2 maps ("3 4 5" and "4 5 6") have maximal number of patterns - 2480. This is because boxes containing 4 or 5 clues have maximal numbers of clues placement variants (7).
Note that every band (stack) of every valid sudoku pattern has one of the posted above form (up to isomorhisms).
Continuation follows...
Serg