Resolution state after Singles and whips[1]:
- Code: Select all
    +-------------------+-------------------+-------------------+ 
   ! 4678  3478  478   ! 56    9     1     ! 2     45    3458  ! 
   ! 468   1     2     ! 56    346   7     ! 358   459   34589 ! 
   ! 45    3459  49    ! 8     234   234   ! 7     6     1     ! 
   +-------------------+-------------------+-------------------+ 
   ! 578   25789 789   ! 4     237   239   ! 6     1     235   ! 
   ! 1     247   3     ! 267   267   5     ! 9     8     24    ! 
   ! 45    2459  6     ! 1     8     239   ! 35    245   7     ! 
   +-------------------+-------------------+-------------------+ 
   ! 9     478   1478  ! 3     1257  28    ! 158   257   6     ! 
   ! 2     78    178   ! 9     157   6     ! 4     3     58    ! 
   ! 3     6     5     ! 27    1247  248   ! 18    279   289   ! 
   +-------------------+-------------------+-------------------+ 
149 candidates.
1) Simplest-first solution:naked-pairs-in-a-column: c1{r3 r6}{n4 n5} ==> r4c1 ≠ 5, r2c1 ≠ 4, r1c1 ≠ 4
naked-pairs-in-a-column: c4{r1 r2}{n5 n6} ==> r5c4 ≠ 6
hidden-single-in-a-block ==> r5c5 = 6
naked-triplets-in-a-block: b9{r7c7 r8c9 r9c7}{n1 n5 n8} ==> r9c9 ≠ 8, r7c8 ≠ 5
naked-triplets-in-a-row: r9{c4 c8 c9}{n2 n7 n9} ==> r9c6 ≠ 2, r9c5 ≠ 7, r9c5 ≠ 2
finned-swordfish-in-rows: n4{r7 r5 r1}{c3 c2 c9} ==> r2c9 ≠ 4
biv-chain[3]: r8c2{n7 n8} - r8c9{n8 n5} - r4n5{c9 c2} ==> r4c2 ≠ 7
biv-chain[4]: r7c6{n8 n2} - c4n2{r9 r5} - r5n7{c4 c2} - r8c2{n7 n8} ==> r7c2 ≠ 8, r7c3 ≠ 8
whip[1]: b7n8{r8c3 .} ==> r8c9 ≠ 8
singles ==> r8c9 = 5, r4c2 = 5, r6c1 = 4, r3c1 = 5, r5c9 = 4, r7c5 = 5
whip[1]: b9n8{r9c7 .} ==> r2c7 ≠ 8
finned-x-wing-in-columns: n2{c9 c4}{r9 r4} ==> r4c6 ≠ 2, r4c5 ≠ 2
stte
2) 1-step solutions:There are 11 W1-anti-backdoors: n1r9c7 n8r9c6 n4r9c5 n7r9c4 n7r7c8 n2r7c6 n2r5c4 n4r3c6 n5r2c4 n6r2c1 n6r1c4 
6 of them give rise to a single step solution with whips, but most of them require long whips (of length ≥9). The simplest is with a whip[8]:
whip[8]: r3n2{c6 c5} - r3n3{c5 c2} - b2n3{r3c6 r2c5} - r4c5{n3 n7} - r5n7{c5 c2} - r8c2{n7 n8} - r7c2{n8 n4} - r1c2{n4 .} ==> r3c6 ≠ 4
stte
Notice that this is a really 1-step solution, with no "basic" steps before it. Whence the longer length of the chain necessary for the elimination.