champagne wrote:It seems that nobody is ready to come with a solution,
You left us too less time...
My solution is based on General Exocets:
Note: I have doubts about digit 5 complying with JE pattern (because of the given 5r5c4, in cross-line c4...)
- Code: Select all
+---------------------------+--------------------------+----------------------------+
| 9 8 13 | 7 1245 12345 | 6 245 125 | 1
| 5 17 4 | 6 8 12 | 3 279 1279 |
| 1367 2 136 | 134 9 1345 | 157 4578 1578 | 1 5
+---------------------------+--------------------------+----------------------------+
| 2346 5 2369 | 2349 2467 8 | 279 1 23679 | 2 9
| 12368 1369 7 | 5 126 1239 | 4 289 23689 | 5
| 123468 13469 12369 | 12349 12467 12349 | 2579 25789 2356789 | 1 2 5 9
+---------------------------+--------------------------+----------------------------+
| 47-12 47-19 8 | T129-4 1245 6 | t129-57 3 12579 |
| 1237 1379 T125-39 | 8 b125 b1259 | 7-1259 6 4 |
| 1246 1469 t1259-6 | 1249 3 7 | 8 B259 B1259 |
+---------------------------+--------------------------+----------------------------+
Double General Exocet (1259)r8c56, r9c3, r7c7; r9c89, r7c4, r8c3
Check the exocet property:
- for digit 1: +1r8c56, -1r9c3, -1r7c7 => no solution (with singles); +1r9c89, -1r7c4, -1r8c3 => no solution (with singles)
- for digit 5: +5r8c56, -5r9c3, -5r7c7 => box 7 void of 5's; +5r9c89, -5r7c4, -5r8c3 => box 7 void of 5's
- for digits 2, 9: they comply with the JE requirement
Eliminations:
-4r7c4, -7 r7c7, -3r8c3, -6r9c3 (non base digits in target cells);
-1259r8c7, -129r7c12 (cells in sight of the 4 base cells or the 4 target cells)
-5r7c7, -9r8c3 (base digits in target cells, false in mirror nodes)
Resulting resolution state (skfr 8.5):
- Code: Select all
+---------------------------+-------------------------+--------------------------+
| 9 8 13 | 7 1245 12345 | 6 245 125 |
| 5 17 4 | 6 8 12 | 3 279 1279 |
| 1367 2 136 | 13 9 1345 | 15 4578 1578 |
+---------------------------+-------------------------+--------------------------+
| 2346 5 2369 | 239 2467 8 | 29 1 23679 |
| 12368 1369 7 | 5 126 1239 | 4 289 23689 |
| 123468 13469 12369 | 1239 12467 12349 | 259 25789 2356789 |
+---------------------------+-------------------------+--------------------------+
| 47 47 8 | 129 125 6 | 129 3 1259 |
| 123 139 125 | 8 125 1259 | 7 6 4 |
| 126 169 1259 | 4 3 7 | 8 259 1259 |
+---------------------------+-------------------------+--------------------------+
Solution in 6 steps (AICs and one kraken)
1. (8=295)b6p157 - (5=1367)r3c1347 - (7=4)r7c1 - r4c1 = (4-7)r4c5 = (736)r456c9 => -8 r56c9; 1 placement
2. (4)r6c2 = r7c2 - (4=7)r7c1 - r3c1 = (78-4)r3c89 = (4)r3c6 => -4 r6c6; lcls, 1 placement
3. (7)r4c9 = (7-4)r4c5 = r4c1 - (4=7)r7c1 - r7c2 = (7)r2c2 =>-7r2c9; lcls, 1 placement
4. (4=7)r7c1 - (7=1365)r3c1347 - (5=298)b6p157 - r5c1 = (8)r6c1 => -4 r6c1
5. (4)r4c1 = (4-7)r7c1 = (7-6)r3c1 = r3c3 - (6=293)r4c347 => -3 r4c1
6. Kraken column (5)r138c6
(53)r1c36
(5)r3c6 - (5=13)r3c47
(5)r8c6 - (5=123)r8c135
=> -3 r3c1; lclste