After the first step (Exocet (1234)[r3c45, r2c2 & r1c8], eliminitaion of 4r3c45, r2c2, r1c8) it was suggested to end the remaining ER9.0 with "more classical moves"
Here an attempt to do so (FWIW):
- Code: Select all
+-------------------------+-------------------------+-------------------------+
| 9 8 123 | 7 6 4 | 5 123 123 |
| 7 123 1236 | 8 235 1235 | 4 9 1236 |
| 136 4 5 | 123 23 9 | 167 12367 8 |
+-------------------------+-------------------------+-------------------------+
| 5 9 1237 | 1234 2347 6 | 17 8 127 |
| 168 127 4 | 1259 25789 1258 | 3 1267 12679 |
| 1368 1237 123678 | 1239 23789 1238 | 1679 4 5 |
+-------------------------+-------------------------+-------------------------+
| 4 6 1389 | 239 2389 7 | 189 5 139 |
| 2 357 3789 | 3569 1 358 | 6789 367 4 |
| 138 1357 13789 | 34569 34589 358 | 2 1367 13679 |
+-------------------------+-------------------------+-------------------------+
2. Kraken column (6)r259c9 =>-17r6c7
||(6)r2c9 - (6=17)r34c7
||(6-9)r5c9 = (9)r6c7
||(6-7)r9c9 = r45c9* - (7=1)r4c7
3. Almost X-wing(2)r47c45
(2)r4c3 - r1c3 = r1c89
XW(2)r47c45 - r3c45 = r3c8
(2)r4c9
=> -2 r2c9
4. Finned jellyfish(1)r1347\c3479 + fins r13c8
=> -1 r2c9
- Code: Select all
+-------------------------+-------------------------+-------------------------+
| 9 8 123 | 7 6 4 | 5 123 123 |
| 7 123 1236 | 8 235 1235 | 4 9 36 |
| 136 4 5 | 123 23 9 | 167 12367 8 |
+-------------------------+-------------------------+-------------------------+
| 5 9 1237 | 134 2347 6 | 17 8 127 |
| 168 127 4 | 1259 25789 1258 | 3 1267 12679 |
| 1368 1237 123678 | 1239 23789 1238 | 69 4 5 |
+-------------------------+-------------------------+-------------------------+
| 4 6 1389 | 239 2389 7 | 189 5 139 |
| 2 357 3789 | 3569 1 358 | 6789 367 4 |
| 138 1357 13789 | 34569 34589 358 | 2 1367 13679 |
+-------------------------+-------------------------+-------------------------+
5. (3)r1c3 = r1c89 - (3=6)r2c9 - r2c3 = (6)r3c1 => -3 r3c1
6. Kraken cell (1239)r6c4 => -3 r3c8
(1)r6c4 - (1=23)r3c45
(2)r6c4 - r56c6 = r2c6 - (2=3)r3c5
(3)r6c4 - r4c45 = r4c3 - r1c3 = (3)r1c89
(9)r6c4 - (9=6)r6c7 - r6c3 = r2c3 - (6=3)r2c9
- Code: Select all
+------------------------+-------------------------+------------------------+
| 9 8 123 | 7 6 4 | 5 123 123 |
| 7 123 1236 | 8 25 125 | 4 9 36 |
| 16 4 5 | 123 23 9 | 167 1267 8 |
+------------------------+-------------------------+------------------------+
| 5 9 1237 | 34 2347 6 | 17 8 127 |
| 168 127 4 | 1259 25789 1258 | 3 1267 12679 |
| 1368 1237 12678 | 1239 23789 1238 | 69 4 5 |
+------------------------+-------------------------+------------------------+
| 4 6 1389 | 239 2389 7 | 189 5 139 |
| 2 357 3789 | 3569 1 358 | 6789 367 4 |
| 138 1357 13789 | 34569 34589 358 | 2 1367 13679 |
+------------------------+-------------------------+------------------------+
7. Finned Jellyfish(3)r2347\c3459 + fin r2c2
=>-3 r1c3; 10 placements & basics
- Code: Select all
+-----------------------+-----------------------+--------------------+
| 9 8 12 | 7 6 4 | 5 123 13 |
| 7 123 123 | 8 25 125 | 4 9 6 |
| 6 4 5 | 123 23 9 | 17 127 8 |
+-----------------------+-----------------------+--------------------+
| 5 9 1237 | 4 237 6 | 17 8 127 |
| 18 127 4 | 1259 25789 125 | 3 6 127 |
| 138 1237 6 | 123 2378 123 | 9 4 5 |
+-----------------------+-----------------------+--------------------+
| 4 6 139 | 239 239 7 | 8 5 139 |
| 2 357 3789 | 359 1 358 | 6 37 4 |
| 13 1357 13789 | 6 4 358 | 2 137 1379 |
+-----------------------+-----------------------+--------------------+
8. (1)r1c3 = r2c23 - r2c6 = (1-3)r3c4 = r3c5 - r4c5 = r4c3- r2c3 = (3)r2c2 => -1 r2c2; 5 placements & basics
9. (3)r6c6 = r89c6 - r7c45 = r7c3 - (3=157)r8c2.r9c12 - (7123=8)r6c1246 => -3 r6c1; singles to 81
Not sure to have given the right fish names...
No doubt, abi's way was the right way...