Jeff wrote:Absolutely, I am just waiting for Max to publish his solution first in order to maintenance as much enjoyment for him as possible.
I imagine Max is sleeping peacefully
Z Z Z Z Z. I just have to keep my voice down. Here is my solution to the exercise with descriptions of trivial eliminations (include xy-wing) omitted:
- Code: Select all
*-----------*
|...|...|...|
|.78|2.6|31.|
|69.|...|.52|
|---+---+---|
|..7|9.1|4..|
|.6.|...|.7.|
|..3|6.8|5..|
|---+---+---|
|38.|...|.47|
|.25|1.3|69.|
|...|...|...|
*-----------*
*-----------------------------------------------------------*
| 1245 3 124 | 478 1589 4579 | 789 68 469 |
| 45 7 8 | 2 59 6 | 3 1 49 |
| 6 9 14 | 3478 138 47 | 78 5 2 |
|-------------------+-------------------+-------------------|
| 28 5 7 | 9 23 1 | 4 68 36 |
| 1289 6 129 | 34 235 245 | 89 7 139 |
| 149 14 3 | 6 7 8 | 5 2 19 |
|-------------------+-------------------+-------------------|
| 3 8 169 | 5 269 29 | 12 4 7 |
| 7 2 5 | 1 4 3 | 6 9 8 |
| 149 14 1469 | 78 2689 279 | 12 3 5 |
*-----------------------------------------------------------*
1) combination chain: [r3c4]-7-[r3c6]-4-[r5c6]=4=[r5c4]=3=[r3c4] => r3c4<>7
2) combination chain: [r3c4]-8-[r3c7]-7-[r3c6]-4-[r5c6]=4=[r5c4]=3=[r3c4] => r3c4<>8
3) pure bivalue chain (xy-chain): [r7c3]-1-[r3c3]-4-[r3c6]-7-[r3c7]-8-[r5c7]-9-[r5c9]-1-[r6c2]-4-[r9c2]-1-[r7c3] => r7c3<>1
4) pure bivalue chain (xy-chain): [r9c3]-1-[r3c3]-4-[r3c6]-7-[r3c7]-8-[r5c7]-9-[r5c9]-1-[r6c2]-4-[r9c2]-1-[r9c3] => r9c3<>1
5) combination chain: [r1c3]-1-[r3c3]-4-[r3c6]-7-[r3c7]-8-[r1c8]=8=[r4c8]-8-[r4c1]-2-[r5c3]=2=[r1c3] => r1c3<>1
- Code: Select all
*-----------------------------------------------------------*
| 1245 3 24 | 78 1589 4579 | 789 68 469 |
| 45 7 8 | 2 59 6 | 3 1 49 |
| 6 9 14 | 34 138 47 | 78 5 2 |
|-------------------+-------------------+-------------------|
| 28 5 7 | 9 23 1 | 4 68 36 |
| 1289 6 129 | 34 235 245 | 89 7 139 |
| 149 14 3 | 6 7 8 | 5 2 19 |
|-------------------+-------------------+-------------------|
| 3 8 69 | 5 269 29 | 1 4 7 |
| 7 2 5 | 1 4 3 | 6 9 8 |
| 149 14 469 | 78 689 79 | 2 3 5 |
*-----------------------------------------------------------*
6) combination chain: [r3c5]-3-[r4c5]=3=[r4c9]=6=[r4c8]=8=[r1c8]-8-[r3c7]=8=[3c5] => r3c5<>3
- Code: Select all
*-----------------------------------------------------------*
| 1245 3 24 | 78 1589 4579 | 789 68 469 |
| 45 7 8 | 2 59 6 | 3 1 49 |
| 6 9 14 | 3 18 47 | 78 5 2 |
|-------------------+-------------------+-------------------|
| 28 5 7 | 9 23 1 | 4 68 36 |
| 1289 6 129 | 4 235 25 | 89 7 139 |
| 149 14 3 | 6 7 8 | 5 2 19 |
|-------------------+-------------------+-------------------|
| 3 8 69 | 5 269 29 | 1 4 7 |
| 7 2 5 | 1 4 3 | 6 9 8 |
| 149 14 469 | 78 689 79 | 2 3 5 |
*-----------------------------------------------------------*
7) continuous combination chain: =[r9c4]=8=[r9c5]-8-[r3c5]=8=[r3c7]=7=[r3c6]-7-[r9c6]=7=[9c4]=
=> r1c5<>8 and r1c6<>7
- Code: Select all
*-----------------------------------------------------------*
| 1245 3 24 | 78 159 459 | 789 68 469 |
| 45 7 8 | 2 59 6 | 3 1 49 |
| 6 9 14 | 3 18 47 | 78 5 2 |
|-------------------+-------------------+-------------------|
| 28 5 7 | 9 23 1 | 4 68 36 |
| 1289 6 129 | 4 235 25 | 89 7 139 |
| 149 14 3 | 6 7 8 | 5 2 19 |
|-------------------+-------------------+-------------------|
| 3 8 69 | 5 269 29 | 1 4 7 |
| 7 2 5 | 1 4 3 | 6 9 8 |
| 149 14 469 | 78 689 79 | 2 3 5 |
*-----------------------------------------------------------*
Uniqueness rectangle: [r6c1][r6c2][r9c1][r9c2] => r5c1<>9
- Code: Select all
*-----------------------------------------------------------*
| 1245 3 24 | 78 159 459 | 789 68 469 |
| 45 7 8 | 2 59 6 | 3 1 49 |
| 6 9 14 | 3 18 47 | 78 5 2 |
|-------------------+-------------------+-------------------|
| 28 5 7 | 9 23 1 | 4 68 36 |
| 128 6 129 | 4 235 25 | 89 7 139 |
| 149 14 3 | 6 7 8 | 5 2 19 |
|-------------------+-------------------+-------------------|
| 3 8 69 | 5 269 29 | 1 4 7 |
| 7 2 5 | 1 4 3 | 6 9 8 |
| 149 14 469 | 78 689 79 | 2 3 5 |
*-----------------------------------------------------------*
8) pure bilocation chain: [r9c2]=1=[r9c1]=9=[r6c1]=4=[r6c2]=1=[r9c2] => r9c2=1
- Code: Select all
*-----------------------------------------------------------*
| 1245 3 24 | 78 159 459 | 789 68 469 |
| 45 7 8 | 2 59 6 | 3 1 49 |
| 6 9 14 | 3 18 47 | 78 5 2 |
|-------------------+-------------------+-------------------|
| 28 5 7 | 9 23 1 | 4 68 36 |
| 128 6 129 | 4 235 25 | 89 7 139 |
| 19 4 3 | 6 7 8 | 5 2 19 |
|-------------------+-------------------+-------------------|
| 3 8 69 | 5 269 29 | 1 4 7 |
| 7 2 5 | 1 4 3 | 6 9 8 |
| 49 1 469 | 78 68 79 | 2 3 5 |
*-----------------------------------------------------------*
9) pure bivalue chain (xy-chain): [r2c1]-4-[r2c9]-9-[r6c9]-1-[r6c1]-9-[r9c1]-4-[r2c1] => r2c1<>4
- Code: Select all
*--------------------------------------------------*
| 14 3 2 | 78 15 45 | 789 68 69 |
| 5 7 8 | 2 9 6 | 3 1 4 |
| 6 9 14 | 3 18 47 | 78 5 2 |
|----------------+----------------+----------------|
| 28 5 7 | 9 23 1 | 4 68 36 |
| 28 6 19 | 4 235 25 | 89 7 139 |
| 19 4 3 | 6 7 8 | 5 2 19 |
|----------------+----------------+----------------|
| 3 8 69 | 5 26 29 | 1 4 7 |
| 7 2 5 | 1 4 3 | 6 9 8 |
| 49 1 469 | 78 68 79 | 2 3 5 |
*--------------------------------------------------*
10) pure bilocation chain: [r1c5]=5=[r1c6]=4=[r1c1]=1=[r6c1]=9=[r5c3]=1=[r5c9]=3=[r5c5]=5=[r1c5] => r1c5=5
The grid can be solved using basic rules from here.
Alternatively, Chains 8, 9 and 10 can be replaced by one triple implication chain as follows:
Triple combination chain with bivalue tripod at r1c6:
[r4c5]=3=[r4c9]=6=[r4c8]=8=[r5c7]=9=[r1c7]=7=[r3c7]-7-[r3c6]-4-[r1c6]-5-[r5c6]-2-[r4c5]
[r4c5]=3=[r4c9]=6=[r4c8]=8=[r5c7]=9=[r1c7]-9-[r1c6]-5-[r5c6]-2-[r4c5]
All imply r4c5<>2