Harshgoel2k, here’s my take on your approach.
The inferences available for reducing the candidates in an unsolved cell will be the same whatever way the data is presented. We therefore want data representations that make it easy to recognise when the conditions exist to allow eliminations from different classes of logical arguments.
Your methods provide ways of recognising the conditions for elementary eliminations using your representation, but at first sight don’t seem to provide any insights into any of the more complex elimination classses that are described and discussed in this forum.
As a trial, I took the third example in your web page and found that, although it was described as “near impossible”, it solved very quickly using basic recognition methods using the conventional grid representation.
This is the starting grid where the eliminations have been made in every cell in sight of each given.
Example 3: ......7...4..2.8.3...4...12..1..9.28.3.1.5.7.79.6..1..62...1...9.8.7..5...3......
- Code: Select all
*-----------------------*-----------------------*-----------------------*
| 12358 1568 2569 | 3589 135689 368 | <7> 469 4569 |
| 15 <4> 5679 | 579 <2> 67 | <8> 69 <3> |
| 358 5678 5679 | <4> 35689 3678 | 569 <1> <2> |
*-----------------------*-----------------------*-----------------------*
| 45 56 <1> | 37 34 <9> | 3456 <2> <8> |
| 248 <3> 246 | <1> 48 <5> | 469 <7> 469 |
| <7> <9> 245 | <6> 348 2348 | <1> 34 45 |
*-----------------------*-----------------------*-----------------------*
| <6> <2> 457 | 3589 34589 <1> | 349 3489 479 |
| <9> 1 <8> | 23 <7> 2346 | 2346 <5> 146 |
| 145 157 <3> | 2589 45689 2468 | 2469 4689 14679 |
*-----------------------*-----------------------*-----------------------*
Using basic elimination methods this reduces very quickly to:
- Code: Select all
*-----------------*-----------------*-----------------*
| 2 58 69 | 389 1 368 | <7> 469 4569 |
| 1 <4> 679 | 5 <2> 67 | <8> 69 <3> |
| 3 58 679 | <4> 69 678 | 569 <1> <2> |
*-----------------*-----------------*-----------------*
| 45 6 <1> | 7 3 <9> | 45 <2> <8> |
| 8 <3> 2 | <1> 4 <5> | 69 <7> 69 |
| <7> <9> 45 | <6> 8 2 | <1> 3 45 |
*-----------------*-----------------*-----------------*
| <6> <2> 45 | 389 59 <1> | 349 489 7 |
| <9> 1 <8> | 23 <7> 346 | 2346 <5> 46 |
| 45 7 <3> | 289 569 468 | 2469 4689 1 |
*-----------------*-----------------*-----------------*
Now it’s easy to follow digit 4 to find that it must be true either in r6c9 or r8c6 so that it can be eliminated from r8c9
This also forces (9)r5c9 and reduces to:
- Code: Select all
*--------------*--------------*--------------*
| 2 58 69 | 389 1 368 | <7> 469 45 |
| 1 <4> 679 | 5 <2> 67 | <8> 69 <3> |
| 3 58 679 | <4> 69 678 | 59 <1> <2> |
*--------------*--------------*--------------*
| 45 6 <1> | 7 3 <9> | 45 <2> <8> |
| 8 <3> 2 | <1> 4 <5> | 6 <7> 9 |
| <7> <9> 45 | <6> 8 2 | <1> 3 45 |
*--------------*--------------*--------------*
| <6> <2> 45 | 389 59 <1> | 349 489 7 |
| <9> 1 <8> | 23 <7> 34 | 234 <5> 6 |
| 45 7 <3> | 289 569 468 | 249 489 1 |
*--------------*--------------*--------------*
This time we follow digit 5 and find that for cells r3c7 and r7c5 one must hold a 5 and the other must hold a 9. Hence (9)r3c5 can be eliminated.
The forced assignments that follow now solve the puzzle.
I therefore think you shouldn’t trust that puzzle site to provide difficult examples and should favour sources that I believe have already been pointed out to you.
DPB