This is a difficult puzzle that needed a variety of tactics. Neither Simple Sudoku nor SadMan can solve it completely.
Puzzles this complex will often, if not always, have alternate paths to the solution.
- Code: Select all
6 3 . | 5 . 4 | 8 7 .
1 . . | 6 . 7 | 3 4 9
4 . . | . . . | 5 . 6
-------+-------+------
9 1 . | 8 . . | 2 6 .
. . . | . 6 . | 9 5 .
. 6 3 | . . 9 | . 8 .
-------+-------+------
8 . 1 | . . . | . 9 5
3 . . | 9 . . | . . 8
. 9 6 | 4 . 8 | . 3 .
It isn't clear which candidates you have already eliminated, so, starting from scratch:
- Code: Select all
6 3 29 | 5 129 4 | 8 7 12
1 258 258 | 6 28 7 | 3 4 9
4 278 2789 | 123 12389 123 | 5 12 6
----------------------+----------------------+-------------------
9 1 457 | 8 3457 35 | 2 6 347
27 2478 2478 | 1237 6 123 | 9 5 1347
257 6 3 | 127 12457 9 | 147 8 147
----------------------+----------------------+-------------------
8 247 1 | 237 237 236 | 467 9 5
3 2457 2457 | 9 1257 1256 | 1467 12 8
257 9 6 | 4 1257 8 | 17 3 127
There is a naked triple of [123] in row three -- r3c468. Remove other 1's, 2's and 3's from r3c235.
Either r7c7 or r8c7 must be 4 -- eliminate the 4 in r6c7 ...
... which creates a naked pair of [17] in r69c7 eliminating 1's and 7's from r78c7.
... which forces a 7 in either r9c7 or r9c9, eliminating 7s from r9c15.
... Now the only place in column 1 for a 7 is row 5 or 6, both of which are in box 4 -- so you can eliminate 7's from the rest of box 4 (r45c23).
There is an X-Wing in 5's in r69c14. That is, the only place in row 6 and 9 that a 5 can go is in column 1 and 4. This eliminates the possibility of 5's elsewhere in both columns.
The updated grid at this point:
- Code: Select all
6 3 29 | 5 -129 4 | 8 7 +12
1 258 258 | 6 28 7 | 3 4 9
4 78 789 | 123 89 123 | 5 -12 6
----------------------+----------------------+-------------------
9 1 45 | 8 347 35 | 2 6 347
27 248 248 | 1237 6 123 | 9 5 1347
257 6 3 | 127 12457 9 | 17 8 147
----------------------+----------------------+-------------------
8 247 1 | 237 237 236 | 46 9 5
3 2457 2457 | 9 +-127 1256 | 46 +12 8
25 9 6 | 4 125 8 | 17 3 127
The plus and minuses show "coloring" on the 1's ... both r8c8=1 and r8c8<>1 lead to r8c5<>1.
This allows a further coloring of 1's to remove r6c5:
- Code: Select all
6 3 29 | 5 -129 4 | 8 7 +12
1 258 258 | 6 28 7 | 3 4 9
4 78 789 | 123 89 123 | 5 -12 6
----------------------+----------------------+-------------------
9 1 45 | 8 347 35 | 2 6 347
27 248 248 | 1237 6 123 | 9 5 1347
257 6 3 | 127 +-12457 9 | 17 8 147
----------------------+----------------------+-------------------
8 247 1 | 237 237 236 | 46 9 5
3 2457 2457 | 9 27 -1256 | 46 +12 8
25 9 6 | 4 +125 8 | 17 3 127
This shows that either r1c5 or r9c5 must be 1, eliminating other 1's from column 5.
There is now a naked triple of [237] in box 8 -- remove other 237s from that box.
At long last, this allows some actual placements by singles, leading to this updated grid:
- Code: Select all
6 3 29 | 5 129 4 | 8 7 +12
1 258 258 | 6 28 7 | 3 4 9
4 78 789 | 123 89 a123 | 5 -12 6
----------------------+----------------------+-------------------
9 1 45 | 8 347 35 | 2 6 347
+-27 248 248 | 1237 6 b123 | 9 5 1347
257 6 3 | 127 2457 9 | 17 8 147
----------------------+----------------------+-------------------
8 27 1 | 237 237 6 | 4 9 5
3 2457 2457 | 9 27 15 | 6 +12 8
+25 9 6 | 4 15 8 | 17 3 -127
A somewhat more complex coloring of 2's eliminates 2 from r5c1.
If r9c1 is 2 then r5c1<>2.
If r9c1<>2 then r3c8=2 then r3c6<>2 then r5c6=2 then r5c1<>2.
Therefore, r5c1<>2.
Another single is filled, bringing the grid to:
- Code: Select all
6 3 29 | 5 -129 4 | 8 7 12
1 258 258 | 6 -28 7 | 3 4 9
4 78 789 |-123 89 -123 | 5 +12 6
-------------------+-------------------+----------------
9 1 45 | 8 347 35 | 2 6 347
7 248 248 | 123 6 123 | 9 5 134
25 6 3 | 127 2457 9 | 17 8 147
-------------------+-------------------+----------------
8 27 1 | 237 237 6 | 4 9 5
3 2457 2457 | 9 +27 15 | 6 12 8
25 9 6 | 4 15 8 | 17 3 +127
Finally, we need a "Nishio":
[CORRECTION: Changed typo -- "r3c2=2" changed to "r3c8=2"]If r8c5=2, then r9c9=2, then r3c8=2. But this leaves no place for a 2 in box 2.
Therefore, r8c5<>2.
The rest of the puzzle is solved with singles.